Biological and Habitat Data for Bull
Trout (Salvelinus confluentus) and
Associated Species from Stream Surveys
Conducted in the Southern and Central Mackenzie River Valley, Northwest
Territories, 2000 to 2001
N.J. Mochnacz ${ }^{1}$, J.D. Reist ${ }^{1}$, P. Cott ${ }^{2}$, G. Low ${ }^{3}$, and R. Wastle ${ }^{1}$

Central and Arctic Region
Fisheries and Oceans Canada
${ }^{1}$ Winnipeg, MB R3T 2N6
${ }^{2}$ Inuvik, NT XOE OTO
${ }^{3}$ Hay River XOE OR9

2004

Canadian Data Report of Fisheries and Aquatic Sciences 1131

## Canadian Data Report of

## Fisheries and Aquatic Sciences

Data reports provide a medium for filing and archiving data compilation where little or no analysis is included. Such compilations commonly will have been prepared in support of other journal publications or reports. The subject matter of data reports reflects the broad interests and policies of the Department of Fisheries and Oceans, namely, fisheries and aquatic sciences.

Data reports are not intended for general distribution and the contents must not be referred to in other publications without prior written authorization from the issuing establishment. The correct citation appears above the abstract of each report. Data reports are abstracted in Aquatic Sciences and Fisheries Abstracts and indexed in the Department's annual index to scientific and technical publications.

Numbers 1-25 in this series were issued as Fisheries and Marine Service Data Records. Numbers 26-160 were issued as Department of Fisheries and the Environment, Fisheries and Marine Service Data Reports. The current series name was introduced with the publication of report number 161.

Data reports are produced regionally but are numbered nationally. Requests for individual reports will be filled by the issuing establishment listed on the front cover and title page. Out-of-stock reports will be supplied for a fee by commercial agents.

## Rapport statistique canadien des sciences halieutiques of aquatiques

Les rapports statistiques servent a archiver les compilations de donnees pour les quelles il y a peu ou point d'analyse. Ces compilations auront d'ordinaire ete preparees a l'appui d'autres publications ou rapports. Les sujets des rapports statistiques refletent la vaste gamme des interets et des politiques du ministere des Peches et des Oceans, c'est-a-dire les sciences halieutiques et aquatiques.

Les rapports statistiques ne sont pas destine' a une vaste distribution et leur contenu ne doit pas etre mentionne dans une publication sans autorisation ecrite prealable de l'etablissement auteur. Le titre exact parait au-dessus du resume de chaque rapport. Les rapports statistiques sont resumes dans la revue Resumes des sciences aquatiques et haleiutiques, et ils sont classes dans l'index annuel des publications scientifiques et techniques du Ministere.

Les numeros 1 a 25 de cette serie ont ete publies a titre de releves statistiques, Services des peches et de la mer. Les numeros 26 a 160 ont ete publies a titre de rapports statistiques du Service des peches et de la mer, ministere des Peches et de l'Environnement. Le nom actuel de la serie a ete etabli lors de la parution du numero 161.

Les rapports statistiques sont produits a l'echelon regional, mais numerotes a l'echelon national. Les demandes de rapports seront satisfaites par l'etablissement auteur don't le nom figure sur la couverture et la page du titre. Les rapports epuises seront fournis contre retribution par des agents commerciaux.

Canadian Data Report of
Fisheries and Aquatic Sciences 1131

# BIOLOGICAL AND HABITAT DATA FOR BULL TROUT (Salvelinus confluentus) AND ASSOCIATED SPECIES FROM STREAM SURVEYS CONDUCTED IN THE SOUTHERN AND CENTRAL MACKENZIE RIVER VALLEY, NORTHWEST TERRITORIES, 2000 to 2001 

by
N. J. Mochnacz ${ }^{1}$, J. D. Reist ${ }^{1}$, P. Cott ${ }^{2}$, G. Low ${ }^{3}$, and R. Wastle ${ }^{1}$

Central and Arctic Region
Fisheries and Oceans Canada
${ }^{1}$ Winnipeg, Manitoba R3T 2N6
${ }^{2}$ Inuvik, Northwest Territories XOE OTO
${ }^{3}$ Hay River, Northwest Territories X0E 0R9
© Her Majesty the Queen in Right of Canada, 2004. Cat. No. Fs 97-13/1131E ISSN 0706-6465

Correct citation for this publication:
Mochnacz, N. J., J. D. Reist, P. Cott, G. Low, and R. Wastle. 2004. Biological and habitat data for bull trout (Salvelinus confluentus) and associated species from stream surveys conducted in the southern and central Mackenzie River Valley, Northwest Territories, 2000 to 2001. Can. Data Rep. Fish. Aquat. Sci. 1131: iv + 38p.


#### Abstract

Mochnacz, N. J., J. D. Reist, P. Cott, G. Low, and R. Wastle. 2004. Biological and habitat data for bull trout (Salvelinus confluentus) and associated species from stream surveys conducted in the southern and central Mackenzie River Valley, Northwest Territories, 2000 to 2001. Can. Data Rep. Fish. Aquat. Sci. 1131: iv +38 p.

In the summer and fall of 2000 and 2001 stream surveys were conducted in 18 different tributaries from three major river systems in the southern and central Northwest Territories. Biological data for all species sampled during the two-year study are presented, with emphasis on bull trout. Habitat surveys were completed in six tributaries from the study area. General physical stream features were documented in these six streams, and physical attributes of habitat were also described in Funeral Creek at specific positions where bull trout were captured. The data presented in this report confirm the presence of bull trout in nine tributaries throughout drainages in the southern and central Mackenzie Valley. Results suggest that bull trout populations are small but wide ranging, using a variety of habitat types over a large geographical area. Much of the habitat that bull trout occupy in this region is similar to habitat occupied in the southern part of their distribution. Complete data are provided for both biological sampling and habitat measurements taken during the study.


Key Words: Northwest Territories; NWT; Keele River ; Arctic; oil and gas exploration; Nahanni National Park; habitat preference; bull trout; Arctic grayling; Drum Lake; Liard River; Funeral Creek

## RÉSUMÉ

Mochnacz, N. J., J. D. Reist, P. Cott, G. Low, et R. Wastle. 2004. Biological and habitat data for bull trout (Salvelinus confluentus) and associated species from stream surveys conducted in the southern and central Mackenzie River Valley, Northwest Territories, 2000-2001. Can. Data Rep. Fish. Aquat. Sci. 1131: iv + 38p.

Pendant les saisons d'été et d'automne de 2000 et de 2001, des relevés ont été effectués dans 18 tributaires de trois importants réseaux hydrographiques du sud et du centre des Territoires du Nord-Ouest. Les données biologiques recueillies pendant l'étude de deux ans sur toutes les espèces échantillonnées, plus particulièrement sur l'omble à tête plate, sont présentées ici. Des relevés complets des habitats ont été réalisés pour six tributaires de la zone d'étude. Les caractéristiques physiques générales de ces six cours d'eau ont été documentées, et celles des habitats du ruisseau Funeral ont également été décrites pour les endroits précis où l'omble à tête plate a été capturé. Les données présentées dans ce rapport confirment la présence de l'omble à tête plate dans neuf tributaires sur l'ensemble des bassins hydrographiques dans le sud et le centre de la vallée du Mackenzie. Les résultats semblent indiquer que les populations d'ombles à tête plate sont petites mais largement réparties, et qu'elles fréquentent des habitats variés sur un large secteur géographique. Une bonne partie de l'habitat que l'omble occupe dans cette région est semblable à l'habitat occupé dans la partie sud de son aire de distribution géographique. Les données complètes recueillies pendant l'étude sur les mesures biologiques et sur les habitats sont présentées ici.

Mots clés: Territoires du Nord-Ouest; T.N.-O.; rivière Keele; Arctique; exploration pétrolière et gazière; parc national Nahanni; préférence d'habitat; omble à tête plate; ombre arctique; lac Drum; rivière Liard; ruisseau Funeral

## INTRODUCTION

The bull trout, Salvelinus confluentus (Suckley) is a native char found throughout western North America. West of the continental divide, the species' distribution originally extended from northern California ( $\sim 41^{\circ} \mathrm{N}$ ) and Nevada (McPhail and Baxter 1996), throughout central British Columbia, north into the southern Yukon Territory (Cavender 1978; Haas and McPhail 1991). East of the continental divide the distribution extended from northern Montana and throughout much of western Alberta (Nelson and Paetz 1992; McPhail and Baxter 1996; Fitch 1997). Peripheral populations in the southwestern United States have been extirpated from the McCloud River, California and from three major tributaries in the Willamette system, Oregon (Goetz 1989; McPhail and Baxter 1996). A decline or absence of local populations has also been observed in Alberta (McCart 1997), and there is evidence of drastic declines in several local populations in Nevada, Washington, and British Columbia (Haas and McPhail 1991; McPhail and Baxter 1996).

Such declines have led to formal listings of bull trout as "threatened" within the coterminous United States (U. S. Fish and Wildlife Service 1999) and "sensitive" in Alberta, British Columbia, and the Yukon Territory (Canadian Endangered Species Conservation Council 2001). Bull trout are considered a species that could be at risk of extinction or extirpation in the Northwest Territories (NWT), and are a candidate for a detailed risk assessment (Government of the Northwest Territories, Department of Resources, Wildlife and Economic Development 2000). Impacts contributing to the decline of southern bull trout populations include fragmentation and isolation of populations by man-made structures; over-fishing; habitat disturbance from industrial activities such as seismic, pipeline, forestry and mining work; interaction with exotic species; and, the cumulative effects of these activities (Ford et al. 1995; McCart 1997; Baxter et al. 1999). The present distribution extends from the northwestern United States $\left(\sim 42^{\circ} \mathrm{N}\right)$ throughout interior drainages of British Columbia, western Alberta, and the southern Yukon Territory, north throughout the south-central Mackenzie River valley, NWT ( $\sim 64^{\circ}$ N) (Fig. 1; Haas and McPhail 1991; Reist et al. 2002).

Recent work has confirmed that bull trout populations are more widespread than first thought in the NWT. Captures from locations east and west of the Mackenzie River confirmed the presence of this species approximately 500 km north of the previous northernmost known distribution (Fig. 1; Reist et al. 2002). Repeated capture of bull trout at these locations suggests that these fish are part of self-sustaining populations rather than strays from southern watersheds. However, the actual distribution and biology of bull trout populations occurring in the NWT are poorly understood (Reist et al. 2002). Furthermore, taxonomic confusion between bull trout and Dolly Varden (Salvelinus malma) in the past, and lack of clear, easily applied criteria for identification, have resulted in misidentification of chars throughout the region.

In 2000, the Department of Fisheries and Oceans (DFO), Arctic Fish Ecology Assessment and Research section developed a two-year study designed to acquire distributional and biological information for riverine (fluvial) chars, specifically bull trout
in watersheds of the southern and central NWT. The project was implemented during the summer and fall of 2000 and 2001 with assistance from DFO Fish Habitat Management and the Fisheries Management staff in the region. The intent of the work was to provide information to habitat managers that can be utilized when conducting environmental assessments of development proposals. If areas, times of use, and habitats are identified that may be sensitive for particular fish species, projects can be planned so these are avoided thereby minimizing disturbance. The study will also provide fisheries managers with information on the distribution and biology of bull trout populations and associated species in the NWT. The two-year study was completed in the fall of 2001, and this report provides a compilation of habitat and biological data for bull trout and associated species captured.

## MATERIALS AND METHODS

## Biological Data Collection

Stream surveys were conducted in 18 different tributaries from the Keele, South Nahanni, and Liard river systems (Fig. 2). Fish were captured using a Smith-Root Type VII POW backpack electroshocker, angled using barbless hooks in larger tributaries where depth and flow prevented wading, and fished with multimesh gillnets in deep, low velocity areas. In 2000, streams were sampled in areas which char (i.e., bull trout and/or Dolly Varden) were reported to occur by local people or by consultants and government agencies that have worked in the region. In 2001, streams known to contain bull trout were stratified into lower, middle, and upper reaches and $200-500 \mathrm{~m}$ stretches were electrofished.

Population estimates of bull trout were completed at four randomly selected reaches ( $\sim 200 \mathrm{~m}$ ) in Funeral Creek ( $61^{\circ} 36^{\prime} \mathrm{N}, 124^{\circ} 48^{\prime} \mathrm{W}$ ) using the Zippin three-removal method (Zippin 1958). Funeral Creek was the only stream where population estimates were conducted, as this watercourse was the only safely wadable site where bull trout were caught consistently during the study. Each reach was blocked at the lower and upper boundary by seine nets to prevent fish movement into and out of the sampling area. Three consecutive electrofishing passes were performed in an upstream manner and the number of bull trout captured during each pass was recorded. Approximately twenty minutes elapsed before each subsequent electrofishing pass was conducted in each reach. The number of bull trout captured during each pass was entered into the "Microfish" program which calculates the maximum-likelihood population size estimates at $95 \%$ confidence intervals based on the number of fish captured on each electrofishing pass (Van Deventer and Platts 1989).

To minimize research impacts on populations a combination of live- and deadsampling was conducted. The data collected for each differed as described below.

## Live Sampling

At each sampling location all fish captured were identified to species prior to release. Due to time and resource limitations during the study, biological data were only collected for randomly selected fish of species other than char. All char captured were held
in a fish bag, which is a long tubular bag with mesh on the anterior and posterior ends to ensure water circulation. Fish bags were securely anchored in slow moving water to provide a well oxygenated holding facility before and after biological sampling. Biological data, which included fork length (nearest mm ), weight (nearest g ), sex and maturity state, were documented where possible. Life history type and life stages were assigned to bull trout based on external characteristics, such as size, colour, and presence of parr marks. All bull trout > 200 mm were fitted with an individually numbered Floy-tag inserted at the base of the dorsal fin between the posterior basal pterygiophores. A portion of the adipose fin was removed for genetic analysis and as a secondary marking method. The first fin ray was removed from the left pelvic fin to evaluate the effectiveness of non-lethal ageing using this structure. Once biological data were recorded and structures were taken, bull trout were placed back into the fish holding bag to recover and then released at the same location that they were originally captured.

## Dead Sampling

In locations where bull trout were captured, a limited number of fish were sacrificed for confirmation of species' identity and to acquire additional biological information. Char retained from field sampling were frozen whole and shipped to DFO in Winnipeg. These char were compared to positively identified bull trout to confirm species' identify from qualitative morphological criteria described in literature (Cavender 1978; Haas and McPhail 1991; Nelson and Paetz 1992; Reist et al. 2002). A linear discriminant function (LDF) shown to be 100\% effective in distinguishing Dolly Varden from bull trout (Haas and McPhail 1991) was used to confirm the identity of all char captured. The linear discriminant function is based on four variables; total branchiostegal ray number, total anal ray number, and the ratio of total upper jaw length to standard length. These variables are used in the following equation to determine LDF scores for individuals:

$$
\mathrm{LDF}=0.629 \mathrm{~N}_{\mathrm{b}}+0.178 \mathrm{~N}_{\mathrm{a}}+37.310 \mathrm{~L}_{\mathrm{j}} / \mathrm{L}_{\mathrm{s}}-21.8
$$

Where:

$$
\begin{aligned}
\text { LDF } & =\text { Linear Discriminant Function score } \\
\mathrm{N}_{\mathrm{b}} & =\text { Total number of branchiostegal rays } \\
\mathrm{N}_{\mathrm{a}} & =\text { Total number of anal fin rays } \\
\mathrm{L}_{\mathrm{j}} & =\text { Total length of upper jaw } \\
\mathrm{L}_{\mathrm{s}} & =\text { Standard length of fish }
\end{aligned}
$$

All fish with LDF scores greater than 0 are bull trout, and scores less than 0 are Dolly Varden.

Mitochondrial DNA (mtDNA) analyses (Baxter et al. 1997) were run on tissue samples from 114 char specimens, which included the 42 samples used in the LDF analyses, by individuals from the fish genetics laboratory at the Freshwater Institute in Winnipeg. Ribosomal DNA (rDNA) analyses (Baxter et al. 1997) were run on ten tissue samples, which were also included in both mtDNA and LDF analyses, by individuals from the genetics laboratory at the University of British Columbia. The identification results of voucher specimens examined in the laboratory were accepted if two or more of the analyses (i.e., morphological, mitochondrial DNA, LDF, ribosomal RNA) were in agreement.

Morphometric and meristic measurements were completed for all dead-sampled specimens. Morphometric measurements were measured to the nearest 0.1 mm and included: preorbital, orbital and postorbital lengths; interorbital width; trunk, dorsal, lumbar, anal and caudal peduncle lengths; head, body and caudal peduncle depths; maxillary length and width; pectoral, pelvic and adipose fin lengths; middle gill raker length, and lower arch length (Reist et al. 1997). Meristic variables that were counted included: dorsal, anal, pectoral, and pelvic principal fin rays; upper and lower gill rakers; and pyloric caecae. Biological variables documented included; standard and fork lengths (nearest mm ), weight (nearest g), sex and maturity, gonad weight (nearest 0.1 g ), stomach content analysis, and age determination (Reist et al. 1997). Sexual maturity was determined by internal examination of gonads and each fish was assigned a maturity code (Table 1; McGowan 1992). Stomachs were examined and contents were described as fish, aquatic insects, or terrestrial insects.

Fish were aged using whole and sectioned otoliths. The whole otoliths were placed in distilled water and viewed under a microscope with reflected light. Age was estimated by counting opaque and dark bands (annuli), which represented one year of growth; opaque bands correspond to fast growth in the summer, and darker bands are a result of slower winter growth (Secor et al. 1992). Once ages were determined for whole otoliths, one otolith from each fish was embedded in epoxy-resin and left in a fume hood for seven days to harden. Once the resin was hard, embedded otoliths were cut into thin transverse sections through the sulcus on the dorsal-ventral axis with a diamond saw. The sections were viewed under a microscope with reflected light and annuli were counted to determine ages.

## Habitat Data Collection

During the summer and fall of 2001 habitat surveys were conducted in six study streams to describe bull trout habitat use in the region. The objective was to describe general stream features where bull trout have been captured and to determine specific habitat use at the habitat-unit level.

Habitat use was quantified at the macrohabitat level for all streams and the microhabitat level for one stream during the study. Macrohabitat represents general physical features (e.g. depth, velocity, substrate, wetted width) of a stream. Microhabitat represents the physical features of the stream at specific positions where fish are captured (Goetz 1997). Macrohabitat was quantified from randomly sampled habitat units (pool, run, riffle) in each study stream regardless of bull trout presence or absence. Microhabitat was quantified only at sites where bull trout were observed or captured in the stream.

## Macrohabitat Data Collection

Habitat data were obtained from 81 pools, 55 runs, and 61 riffles that were randomly sampled from 22 reaches in six streams. Habitat surveys were conducted during August and September of 2001 in streams where bull trout had been captured during stream inventory surveys in 2000 and 2001. Reaches that were 200 to 400 m long were selected in the lower, middle, and upper sections of each stream for sampling. Habitat typing followed the technique of Bisson et al. (1988) based on the hydraulic characteristics of each stream; however, habitat was not classified at a scale beyond the pool, run, and riffle level.

To determine physical features of each habitat unit, three equidistant transects were placed parallel as well as perpendicular to water flow within each habitat unit. The transects running parallel with river flow crossed those running perpendicular to flow and resulted in a grid with nine points in each habitat unit. At points where transects crossed, depth, velocity, substrate, and cover were measured giving nine measurements for each variable. Depth was measured with a meter stick, and bottom velocity was measured ( $\sim 5 \mathrm{~cm}$ above the bottom) using a Marsh-McBirney flow meter (accurate to $0.01 \mathrm{~m} / \mathrm{s}$ ). Dominant substrate was estimated visually in the surrounding 5 cm for each point using a modified Wentworth scale (Table 2), and cover was estimated visually at each point according to a ranked classification scale (Table 3). The wetted width of the stream was randomly measured at 50 m intervals throughout all sampling reaches in each stream.

The mean depth and velocity were determined for each habitat unit. Mean depth was calculated by dividing the sum of all nine measurements by 12 to account for zero depth (cm) at each bank (Platts et al. 1983). The mode was determined for substrate and cover in each habitat unit.

## Microhabitat Data Collection

Microhabitat data were collected in Funeral Creek during September 2001. A twoperson crew electrofished two randomly selected reaches (200-300 m). Each time a bull trout was captured a weighted blue or orange marker, representing either juvenile or adult fish, was placed in the habitat unit for later identification. Lengths (nearest mm) and weights (nearest g) were recorded for all bull trout captured in the field, and Floy-tags were attached to all individuals greater than 200 mm that were released live after sampling. All bull trout larger than 200 mm were considered adults, and all less than 200 mm were juveniles based on size-at-age data for sacrificed individuals from the stream. Three transects, parallel as well as perpendicular to flow, were placed in each habitat unit where bull trout were captured, and depth, velocity, dominant substrate and cover were recorded at nine points as described above.

## RESULTS

Common and scientific names with corresponding abbreviations for all species captured are presented in Table 4. Table 5 shows location information, number of fish tagged and released, number of fish dead-sampled and the species for all fish captured during the 2000 and 2001 sampling seasons. Ten different species were captured during stream inventories. Arctic grayling (Thymallus arcticus) and bull trout were the most widely distributed species captured at most sampling sites. Arctic grayling were most abundant in Bluefish Creek where more than 300 individuals, representing many different age classes, including juveniles, were captured. Since grayling were abundant in this stream, only a sub-sample of the catch was measured for length and weighed. Table 6 summarizes the biological data obtained for all species captured from the NWT in 2000 and 2001.

Bull trout were captured in nine of the 18 streams surveyed (Fig. 2). Biological data for bull trout that were both live- and dead-sampled during the 2000 and 2001 field seasons are presented in Table 7. The majority of bull trout $(\mathrm{n}=78)$ were captured from Funeral Creek. Quantitative and qualitative data from the bull trout sampled during this study, and used to identify char captured in 2000 and 2001, are shown in Table 8. These data include morphometric and meristic data used for the LDF and qualitative data based on external characteristics for bull trout described in literature. Qualitative data from bull trout sampled during the study, which included eye position, upper jaw shape and length, head shape, and head size, were consistent with bull trout described in the literature. Most of the char sampled had eyes positioned close to the top of the head, a long decurved upper jaw, and a large relatively flat, triangular-shaped head. Most char measured had LDF scores that suggested they were bull trout; however, a few had scores that corresponded to those observed for Dolly Varden. Also presented are identities implied by mitochondrial and ribosomal DNA analyses. Mitochondrial DNA analyses show that all char captured were bull trout. Results from ribosomal DNA analyses suggest that seven of the char are bull trout and three could be Dolly Varden/bull trout hybrids (Table 8).

Population estimates for the Funeral Creek bull trout population are presented in Table 9. The data suggest that the adult and juvenile populations are small compared to other more prolific species (e.g. grayling). Habitat data by location are summarized for all study reaches and are presented in Table 10.

## DISCUSSION

Based on the genetic and morphometric analyses, all char captured during the study were bull trout. All of the char with LDF scores corresponding to Dolly Varden values were juveniles and in some cases young-of-the-year fish. The LDF has an inherent bias by design, because all meristic counts are highest for bull trout. This implies that if errors in counts are made, which is not uncommon with small fish, they usually result in lower scores and coincide with inaccurate identification of bull trout as either hybrids or Dolly Varden. Since the LDF is very sensitive to branchiostegal ray counts, and most of these counts were difficult to perform accurately for small fish, it is likely that the individuals designated as Dolly Varden are actually bull trout. It is also possible, especially for young-of-the-year (YOY) fish that complete development of these meristic traits had not occurred. The only evidence that suggests Dolly Varden were present in the study area are the rDNA results. However, the sample size of char examined during the trial was extremely low and hybrids were only detected in one of three enzyme markers. In two out of three occurrences of hybrids at enzyme markers the signal was faint making these results suspect.
Furthermore, a larger sample ( $\mathrm{n}=114$ ) of mtDNA was run and no samples showed any evidence that any of the char captured were Dolly Varden.

Arctic grayling were the most abundant species found during the study. In Bluefish Creek juvenile grayling were abundant ( $>300$ ) suggesting that this tributary is likely a
spawning and rearing area. Not as many bull trout were captured as grayling in most sites. This is likely a reflection of the species' biology, as bull trout generally inhabit deep pools making capture difficult and top trophic-level predators are rarely as abundant as lower trophic-level prey species. The only location where bull trout were relatively abundant was in Funeral Creek; however, the higher density observed is likely a result of sampling effort allocated to this site. Since Funeral Creek was identified as a spawning tributary a large proportion of sampling effort was allocated to this area. Despite fishing more than half of the stream on two separate occasions in the late summer and fall, the number of adults captured was low $(\mathrm{n}=16)$ suggesting that this population is relatively small.

The presence of yoy and juvenile bull trout in Funeral Creek suggests that this stream is used for spawning and rearing. Funeral Creek is a high-gradient mountain stream with predominantly cobble to boulder-type substrate. Given that discharging groundwater is common in this area (Chuck Blight, Nahanni National Park Superintendent, pers. comm. 2002) and relatively deep pools ( $>1 \mathrm{~m}$ ) are present in this stream, fish are likely able to overwinter at this location. Further, groundwater upwellings are frequently associated with bull trout redds and increase spawning success as they provide stable water temperatures for incubating eggs (Baxter and McPhail 1999).

Bull trout prefer small, high-gradient mountain streams with cobble to boulder-type substrate. Adults were associated with some type of large cover (e.g. undercut banks, deep pools, boulders) during the day. Juveniles were found most frequently in high velocity habitats at or near the bottom in pocket pools created by large cobble and boulders. Cover use appeared to be dictated by latitude and elevation as the cover-type diversity (e.g. woody debris) tended to decrease in sample sites further north and at higher elevations. In all study streams, a large proportion of suitable spawning and rearing habitat was present. However, in Funeral Creek only a small area appeared to be used by juveniles, which suggests that these fish have specific habitat preferences. Similar site-specific habitat requirements could be prevalent for populations in the north and warrant further investigation.

## CONCLUSIONS

This two-year study has laid a foundation for future research on bull trout and associated species for streams in the southern and central NWT. Information obtained during the study indicates that bull trout populations are small, but wide ranging utilizing a variety of habitat types over a large geographical area. Care must be taken to prevent impacts to bull trout habitat by ensuring that industrial development does not occur in or around such tributaries, especially at times critical to fish life history. It is also important to recognize that many of these watercourses likely provide critical spawning and rearing habitat for bull trout and other species. Protecting these areas will be essential for effective management of bull trout and associated species throughout the NWT.

## ACKNOWLEDGEMENTS

This project was directly supported in 2001 through funding received from Fisheries and Oceans Canada and the Habitat Stewardship Program for Species at Risk sponsored by the Government of Canada. Funding and/or in-kind support was also provided by Parks Canada Agency, Fisheries and Oceans Canada, the Northern Scientific Training Program, Manitoba Wildlife Federation, Government of the Northwest Territories, Department of Resources, Wildlife and Economic Development, Tulita Renewable Resource Council, Nahanni Butte Renewable Resource Council, and the Natural Resources Institute. Robert Bajno (DFO Winnipeg) and Anna Elz (UBC Vancouver) are thanked for preparing and analyzing the samples for the genetic component of this project. E. Taylor is thanked for providing the resources to analyze the samples at the University of British Columbia. Special thanks to L. Bataille, K. Bourassa, K. Cott, J. Demers, K. Ditz, K. Hickling, M. Low, A. Nande, G. Sibbeston, D. Tate, B. Vital, M. Vital, and S. Weaver for assistance in the field. Dr. R.K. Baydack, Dr. P.J. Blanchfield, P. Hvenegaard, J.D. Johnson, and Dr. K.W. Stewart provided valuable technical assistance and advice that was integral for this project. Comments by K. Cott and S. Stephenson improved the manuscript.

## REFERENCES

Baxter, C. V., Frissell, C. A., and Hauer, F. R. 1999. Geomorphology, logging roads and the distribution of bull trout spawning in a forested river basin: implications for management and conservation. Trans. Am. Fish. Soc. 128:854-867.

Baxter, J. S., E. B. Taylor, R. H. Devlin, J. Hagen, and J. D. McPhail. 1997. Evidence for natural hybridization between Dolly Varden (Salvelinus malma) and bull trout (Salvelinus confluentus) in a northcentral British Columbia watershed. Can. J. Fish. Aquat. Sci. 54:421-429.

Baxter, J. S., and McPhail, J. D. 1999. The influence of redd site selection, groundwater upwelling, and over-winter incubation temperature on survival of bull trout (Salvelinus confluentus) from egg to alevin. Can. J. Zool. 77:1233-1239.

Bisson, P. A., Sullivan, K. and Nielson, J. L. 1988. Channel hydraulics, habitat use, and body form of juvenile coho salmon, steelhead, and cutthroat trout in streams. Trans. Am. Fish. Soc. 117:262-273.

Canadian Endangered Species Conservation Council (CESCC) 2001. Wild Species 2000: The general status of species in Canada. Minister of Public Works and Government of Services Canada. Ottawa, http://www.wildspecies.ca/wildspecies2000/en/home_E.html (Accessed October 10, 2003).

Cavender, T. M. 1978. Taxonomy and distribution of the bull trout, Salvelinus confluentus (Suckley), from the American Northwest. California Fish and Game 64:139-174.

Fitch, L. A. 1997. Bull trout in southwestern Alberta: notes on historical and current distribution. In Friends of the Bull Trout Conference Proceedings. Edited by W. C. Mackay, M. K. Brewin and M. Monita. Bull Trout Task Force (Alberta), c/o Trout Unlimited Canada, Calgary. pp. 147-160.

Ford, B. S., Higgins, P. S., Lewis, A. F., Cooper, K. L., Watson, T. A., Gee, C. M.,Ennis, G. L. and Sweeting, R. L. 1995. Literature reviews of the life history, habitat requirements and mitigation/compensation strategies for thirteen sport fish species in the Peace, Liard and Columbia River drainages of British Columbia. Can. Manuscr. Rep. Fish. Aquat. Sci. 2321:132 p.

Goetz, F. 1989. Biology of the bull trout, Salvelinus confluentus, a literature review. U.S. Forest Service, Willamette National Forest, Eugene, Oregon. 53 p.

Goetz, F. A. 1997. Habitat use of juvenile bull trout in cascade mountain streams of Oregon and Washington. In Friends of the Bull Trout Conference Proceedings. Edited by
W. C. Mackay, M. K. Brewin and M. Monita. Bull Trout Task Force (Alberta), c/o Trout Unlimited Canada, Calgary. pp. 339-351.

Government of the Northwest Territories, Department of Resources, Wildlife and Economic Development. 2000. NWT Species 2000: General status ranks of wild species in the Northwest Territories. Government of the Northwest Territories, Department of Resources, Wildlife and Economic Development. 50 p.

Haas, G. R., and McPhail, J. D. 1991. Systematics and distributions of Dolly Varden (Salvelinus malma) and bull trout (Salvelinus confluentus) in North America. Can. J. Fish. Aquat. Sci. 48:2191-2211.

McCart, P. J. 1997. Bull trout in Alberta: a review. In Friends of the Bull Trout Conference Proceedings. Edited by W. C. Mackay, M. K. Brewin and M. Monita. Bull Trout Task Force (Alberta), c/o Trout Unlimited Canada, Calgary. pp. 191-208.

McGowan, D. K. 1992. Data on Arctic charr, Salvelinus alpinus (L.), from the Meliadine River, Northwest Territories, 1990. Can. Data Rep. Fish. Aquat. Sci. No. 867. 9 p.

McPhail, J. D., and Baxter, J. S. 1996. A review of bull trout (Salvelinus confluentus) life history and habitat use in relation to compensation and improvement opportunities. Fisheries Management Report No. 104, Dept. of Zoology, University of British Columbia, 24 p .

Mochnacz, N. J. 2002. Bull trout distribution, life history, and habitat requirements in the southern and central Mackenzie River Valley, Northwest Territories. A report prepared for the Habitat Stewardship Program for Species at Risk, Government of Canada, Edmonton, Alberta. 52 p.

Nelson, J. S., and Paetz, M. J. 1992. The fishes of Alberta. University of Alberta, and University of Calgary press. Edmonton, Alb. 438 p.

Platts, W. S., Megahan, W. F. and Marshall, W. G. 1983. Methods for evaluating stream, riparian, and biotic conditions. General Technical Report. INT-138. U.S. Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station. Ogden, Utah. 70 p.

Reist, J. D., Johnson, J. D. and Carmichael, T. J. 1997. Variation and specific identity of char from Northwestern Arctic Canada and Alaska. Amer. Fish. Soc. Sym. 19:250261.

Reist, J. D., Low, G., Johnson, J. D. and McDowell, D. 2002. Range extension of bull trout, Salvelinus confluentus, to the central Northwest Territories, with notes on char identification and distribution in the western Canadian Arctic. Arctic 55(1):70-76.

Secor, D. H., Dean, J. M. and Laban, E. H. 1992. Otolith removal and preparation for mircrostructural examinination. Can. Spec. Publ. Fish. Aquat. Sci. 117:19-57.
U. S. Fish and Wildlife Service. 1999. Endangered and threatened wildlife and plants; determination of threatened status for bull trout in the coterminous United States; Final Rule. Federal Register 64(210):58910-58933.

Van Deventer, J. S., and Platts, W. S. 1989. Microcomputer software system for generating populations statistics from electrofishing data - User's guide for MicroFish 3.0. General Technical Report. INT-254. Ogden, UT: U.S. Department of Agriculture, Forest Service, Inter-mountain Research Station. 29 p.

Zippin, C. 1958. The removal method of population estimation. J. Wildlife Manag. 22(1):82-90.

Table 1. Sexual maturity codes assigned to char captured during the study (McGowan 1992).

| Maturity State | Male - 1 | Female - 2 |
| :---: | :---: | :---: |
| Immature | 06 - testes long and thin, tubular and scalloped shape, up to full body length, putty-like firmness | 01 - ovaries granular, hard and triangular, up to full length of body cavity, membrane full, eggs distinguishable |
| Mature | 07 - current year spawner, testes large and lobate, white to purplish in cooler, centers may be fluid, milt not expelled by pressure | 02 - current year spawner, ovary fills body cavity, eggs near full size but not loose and not expelled by pressure |
| Ripe | 08 - testes full size, white and lobate, milt expelled by slight penetration | 03 - ovaries greatly extended and fill body cavity, eggs full size and transparent, expelled by |
| Spent | 09 - spawning complete, testes flaccid with some milt, blood vessels obvious, testes violetpink in colour | 04 - spawning complete, ovaries ruptured and flaccid, developing oocytes, visible, some retained eggs in body cavity |
| Resting | 10 - testes tubular, less lobate, healed from spawning, no fluid in center, usually full length of body, mottled and purpulish in colour | 05 - ovary $40-50 \%$ of body cavity volume, membrane thin and semi-transparent, healed from spawning, developing oocytes apparent with few atretic eggs, some eggs may be retained in body cavity |
| Unknown (virgin) | 0 - cannot be sexed, gonads long or short and thin, transparent or translucent |  |
| Unknown (non-virgin) | 11 - resting fish, has spawned but gonads regenerated, or sexing not possible |  |

Table 2. Categories used to define substrate composition for habitat surveys in this study.

| Code | Particle size range (mm) | Substrate definition |
| :---: | :---: | :---: |
|  |  |  |
| 6 | $>256$ | Boulder |
| 5 | $126-255$ | Large Cobble |
| 4 | $64-125$ | Small Cobble |
| 3 | $16-63$ | Pebble |
| 2 | $2-15$ | Gravel |
| 1 | $0.06-1$ | Sand |
| 0 | $<0.059$ | Silt |

Table 3. Cover classification defining types used for habitat surveys in this study.

| Code | Type or size range | Cover definition |
| :---: | :---: | :---: |
|  |  |  |
| 1 | aquatic vegetation | Submerged vegetation |
| 2 | riparian vegetation | Overhanging vegetation |
| 3 | water column depth | Depth |
| 4 | water turbulence | Turbulence |
| 5 | $65-255 \mathrm{~mm}$ | Cobble |
| 6 | $256+$ mm | Boulder |
| 7 | $>30 \mathrm{~cm}$ diameter | Large wood |
| 8 | $<30 \mathrm{~cm}$ diameter | Small wood |
| 9 | stable bank, undercut | Undercut bank |
| 10 | none of the above are applicable | No cover |
|  |  |  |

Table 4. Fish species captured during stream surveys in the Northwest Territories, 2000 and 2001.

| Common Name | Scientific Name | Abbreviation |
| :--- | :--- | :---: |
|  | Thymallus arcticus |  |
| Arctic grayling | Lota lota | ARGR |
| burbot | Salvelinus confluentus | BURB |
| bull trout | Stenodus leucichthys | BLTR |
| inconnu | Couesius plumbeus | INCU |
| lake chub | Catostomus catostomus | LKCH |
| longnose sucker | Prosopium williamsoni | LNSC |
| mountain whitefish | Esox lucius | MTWF |
| northern pike | Cottus cognatus | NRPK |
| slimy sculpin | Catostomus commersoni | SLSC |
| white sucker |  | WHSC |

Table 5. Fishery inventory data for all species from streams and rivers in the Northwest Territories during 2000 and 2001.
$\left.\begin{array}{lcccccc}\hline \text { Capture location } & \text { Date } & \text { Latitude (N) } & \text { Longitude (W) } & \text { Species } & \begin{array}{c}\text { N fish } \\ \text { captured }\end{array} & \begin{array}{c}\text { N fish released } \\ \text { live/tagged }\end{array} \\ \hline \hline & & & & & \\ \text { N fish } \\ \text { dead sampled }\end{array}\right]$

Table 5. (Continued).
$\left.\begin{array}{lcccccc}\hline \text { Capture location } & \text { Date } & \text { Latitude (N) } & \text { Longitude (W) } & \text { Species } & \begin{array}{c}\text { N fish } \\ \text { captured }\end{array} & \begin{array}{c}\text { N fish released } \\ \text { live/tagged }\end{array} \\ \hline \hline & & & & & \\ \text { N fish } \\ \text { dead sampled }\end{array}\right]$

Table 5. (Continued).

| Capture location | Date | Latitude (N) | Longitude (W) | Species | N fish captured | $\mathbf{N}$ fish released live/tagged | N fish dead sampled |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Virginia Falls (South Nahanni River) | Aug-01 | $61^{\circ} 30.671^{\prime}$ | $126^{\circ} 05.121^{\prime}$ | BLTR | 1 | 1 | 0 |
| Sheaf Creek | Sep-01 | - | - | SLSC | 6 | 6 | 0 |
| Carcajou River system |  |  |  |  |  |  |  |
| Dodo Creek | Sep-01 | $64^{\circ} 50.695{ }^{\prime}$ | $127^{\circ} 14.773^{\prime}$ | SLSC | 10 | 9 | 1 |
| Dodo Creek | Sep-01 | $64^{\circ} 50.695^{\prime}$ | $127^{\circ} 14.773^{\prime}$ | ARGR | 22 | 22 | 0 |

Table 6. Biological data from both live- and dead-sampled fish species captured in the Northwest Territories during 2000 and 2001.

| No. | Fish ID ${ }^{1}$ | Location ${ }^{2}$ | $\begin{gathered} \text { Date } \\ \text { M/D/Y } \end{gathered}$ | Latitude (N) | Longitude (W) | Method ${ }^{3}$ | Species | $\begin{gathered} \text { FL } \\ (\mathbf{m m}) \end{gathered}$ | Wt (g) | Life Stage Assigned | Notes ${ }^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | - | Unnamed Cr. ${ }^{\text {A }}$ | 07/22/00 | $60^{\circ} 36^{\prime} 13.6^{\prime \prime}$ | $124^{\circ} 01^{\prime} 31.1^{\prime \prime}$ | ANG | ARGR | 271 | 190 | Adult | 15 additional ARGR caught ( $\sim 200-400 \mathrm{~mm}$ ) |
| 2 | MC001 | Unnamed Cr. ${ }^{\text {A }}$ | 07/22/00 | $60^{\circ} 36^{\prime} 13.6^{\prime \prime}$ | $124^{\circ} 01^{\prime} 31.1^{\prime \prime}$ | ANG | BLTR | 350 | 400 | Adult | - |
| 3 | MC002 | Unnamed Cr. ${ }^{\text {A }}$ | 07/22/00 | $60^{\circ} 36^{\prime} 13.6^{\prime \prime}$ | $124^{\circ} 01^{\prime} 31.1^{\prime \prime}$ | ANG | BLTR | 380 | 460 | Adult | - |
| 4 | MC003 | Unnamed Cr. ${ }^{\text {A }}$ | 07/23/00 | $60^{\circ} 36^{\prime} 13.6^{\prime \prime}$ | $124^{\circ} 01^{\prime} 31.1^{\prime \prime}$ | ANG | BLTR | 228 | 130 | Adult | - |
| 5 | MC004 | Unnamed Cr. ${ }^{\text {A }}$ | 07/23/00 | $60^{\circ} 36^{\prime} 13.6^{\prime \prime}$ | $124^{\circ} 01^{\prime} 31.1^{\prime \prime}$ | ANG | BLTR | 286 | 450 | Adult | - |
| 6 | MC005 | Unnamed Cr. ${ }^{\text {A }}$ | 07/23/00 | $60^{\circ} 36^{\prime} 13.6^{\prime \prime}$ | $124^{\circ} 01^{\prime} 31.1^{\prime \prime}$ | ANG | BLTR | 300 | 590 | Adult | - |
| 7 | MC006 | Unnamed Cr. ${ }^{\text {A }}$ | 07/23/00 | $60^{\circ} 36^{\prime} 13.6^{\prime \prime}$ | $124^{\circ} 01^{\prime} 31.1^{\prime \prime}$ | ANG | BLTR | 240 | 190 | Adult | - |
| 8 | MC007 | Unnamed Cr. ${ }^{\text {A }}$ | 07/23/00 | $60^{\circ} 36^{\prime} 06.7^{\prime \prime}$ | $124^{\circ} 01^{\prime} 55.4^{\prime \prime}$ | ANG | BLTR | 234 | 100 | Adult | - |
| 9 | MC008 | Unnamed Cr. ${ }^{\text {A }}$ | 07/23/00 | $60^{\circ} 36^{\prime} 05.5^{\prime \prime}$ | $124^{\circ} 02^{\prime} 04.3{ }^{\prime \prime}$ | ANG | BLTR | 265 | 180 | Adult | - |
| 10 | MC009 | Unnamed Cr. ${ }^{\text {A }}$ | 07/23/00 | $60^{\circ} 36^{\prime} 05.5^{\prime \prime}$ | $124^{\circ} 02^{\prime} 04.3^{\prime \prime}$ | ANG | BLTR | 344 | 380 | Adult | - |
| 11 | MC0010 | Unnamed Cr. ${ }^{\text {A }}$ | 07/24/00 | $60^{\circ} 36^{\prime} 06.1^{\prime \prime}$ | $124^{\circ} 01^{\prime} 39.9^{\prime \prime}$ | ANG | BLTR | 312 | 290 | Adult | - |
| 12 | 47257 | Unnamed Cr. ${ }^{\text {A }}$ | 07/24/00 | $60^{\circ} 36^{\prime} 01.9^{\prime \prime}$ | $124^{\circ} 02^{\prime} 11.0^{\prime \prime}$ | ANG | BLTR | 289 | 235 | Adult | - |
| 13 | 47258 | Unnamed Cr. ${ }^{\text {A }}$ | 07/24/00 | $60^{\circ} 36^{\prime} 01.9^{\prime \prime}$ | $124^{\circ} 02^{\prime} 11.0^{\prime \prime}$ | ANG | BLTR | 355 | 479 | Adult | - |
| 14 | - | Great Bear R. | 08/01/00 | $64^{\circ} 58^{\prime} 58.0^{\prime \prime}$ | $124^{\circ} 52^{\prime} 51.0^{\prime \prime}$ | ANG | ARGR | - | - | Adult | 21 additional ARGR caught ( $\sim 230-400 \mathrm{~mm}$ ) |
| 15 | - | Great Bear R. | 08/02/00 | $64^{\circ} 58^{\prime} 58.0^{\prime \prime}$ | $124^{\circ} 52^{\prime} 51.0^{\prime \prime}$ | ANG | NRPK | - | - | Adult | 4 additional NRPK caught ( $\sim 400-600 \mathrm{~mm}$ ) |
| 16 | MC0011 | Keele R. | 08/03/00 | $64^{\circ} 14^{\prime} 33.5^{\prime \prime}$ | $125^{\circ} 59^{\prime} 26.5^{\prime \prime}$ | ANG | BLTR | 636 | 1220 | Adult | - |
| 17 | 48.835 | Keele R. | 08/03/00 | $64^{\circ} 14^{\prime} 59.3^{\prime \prime}$ | $125^{\circ} 59^{\prime} 44.4$ " | ANG | BLTR | 604 | 2000 | Adult | - |
| 18 | 48.814 | Keele R. | 08/03/00 | $64^{\circ} 14^{\prime} 59.3^{\prime \prime}$ | $125^{\circ} 59^{\prime} 44.4{ }^{\prime \prime}$ | ANG | BLTR | 577 | 1790 | Adult | - |
| 19 | 48.872 | Keele R. | 08/03/00 | $64^{\circ} 14^{\prime} 59.3^{\prime \prime}$ | $125^{\circ} 59^{\prime} 44.4{ }^{\prime \prime}$ | ANG | BLTR | 583 | 1410 | Adult | - |
| 20 | 48.695 | Keele R. | 08/03/00 | $64^{\circ} 14^{\prime} 59.3^{\prime \prime}$ | $125^{\circ} 59^{\prime} 44.4{ }^{\prime \prime}$ | ANG | BLTR | 522 | 1230 | Adult | - |
| 21 | 48.854 | Keele R. | 08/03/00 | $64^{\circ} 14^{\prime} 59.3^{\prime \prime}$ | $125^{\circ} 59^{\prime} 44.4$ " | ANG | BLTR | 535 | 1300 | Adult | - |
| 22 | 48.774 | Keele R. | 08/03/00 | $64^{\circ} 14^{\prime} 59.3^{\prime \prime}$ | $125^{\circ} 59^{\prime} 44.4{ }^{\prime \prime}$ | ANG | BLTR | 485 | 1000 | Adult | - |
| 23 | 48.754 | Keele R. | 08/03/00 | $64^{\circ} 14^{\prime} 59.3^{\prime \prime}$ | $125^{\circ} 59^{\prime} 44.4{ }^{\prime \prime}$ | ANG | BLTR | 474 | 1000 | Adult | - |
| 24 | MC0012 | Keele R. | 08/03/00 | $64^{\circ} 14^{\prime} 59.3^{\prime \prime}$ | $125^{\circ} 59^{\prime} 44.4$ " | ANG | BLTR | 432 | 730 | Adult | - |

Table 6. (Continued).

| No. | Fish ID ${ }^{1}$ | Location ${ }^{2}$ | Date <br> M/D/Y | Latitude (N) | Longitude (W) | Method ${ }^{3}$ | Species | $\begin{gathered} \hline \text { FL } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | Wt (g) | Life Stage Assigned | Notes ${ }^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 25 | 48.715 | Keele R. | 08/04/00 | $64^{\circ} 14^{\prime} 28.6^{\prime \prime}$ | $126^{\circ} 25^{\prime} 44.1^{\prime \prime}$ | ANG | BLTR | 513 | 1150 | Adult | - |
| 26 | 48.795 | Keele R. | 08/05/00 | $64^{\circ} 14^{\prime} 28.6^{\prime \prime}$ | $126^{\circ} 25^{\prime} 44.1^{\prime \prime}$ | ANG | BLTR | 548 | 1540 | Adult | - |
| 27 | 47259 | Keele R. | 08/05/00 | $64^{\circ} 14^{\prime} 28.6^{\prime \prime}$ | $126^{\circ} 25^{\prime} 44.1^{\prime \prime}$ | GN | BLTR | 512 | 1435 | Adult | - |
| 28 | 47260 | Keele R. | 08/05/00 | $64^{\circ} 14^{\prime} 28.6^{\prime \prime}$ | $126^{\circ} 25^{\prime} 44.1^{\prime \prime}$ | GN | BLTR | 533 | 1341 | Adult | - |
| 29 | 47261 | Drum Lake outlet | 09/13/00 | $63^{\circ} 49^{\prime} 58.6^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.9^{\prime \prime}$ | ANG | BLTR | 561 | 1806 | Adult | Observed 3 other BLTR, 1-2 ARGR lesions |
| 30 | 47262 | Drum Lake outlet | 09/13/00 | $63^{\circ} 49^{\prime} 58.6^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.9$ " | ANG | BLTR | 583 | 2161 | Adult | - |
| 31 | - | Drum Lake outlet | 09/14/00 | $63^{\circ} 49^{\prime} 58.6^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.9^{\prime \prime}$ | ANG | ARGR | - | - | - | 10 additional ARGR caught ( $200-400 \mathrm{~mm}$ ) |
| 32 | - | Unnamed Cr. ${ }^{\text {A }}$ | 08/10/01 | $60^{\circ} 36^{\prime} 03.6^{\prime \prime}$ | $124^{\circ} 13^{\prime} 54.0^{\prime \prime}$ | ANG | ARGR | - | - | - | 15 additional ARGR caught ( $\sim 200-450 \mathrm{~mm}$ ) |
| 33 | 47326 | Unnamed Cr. ${ }^{\text {A }}$ | 08/10/01 | $60^{\circ} 36^{\prime} 03.6^{\prime \prime}$ | $124^{\circ} 13^{\prime} 54.0^{\prime \prime}$ | ANG | BLTR | 270 | 200 | Adult | Stomach - terrestrial and aquatic insects |
| 34 | 47327 | Unnamed Cr. ${ }^{\text {A }}$ | 08/10/01 | $60^{\circ} 36^{\prime} 03.6^{\prime \prime}$ | $124^{\circ} 13^{\prime} 54.0^{\prime \prime}$ | ANG | BLTR | 276 | 253 | Adult | Stomach - SLSC |
| 35 | 47328 | Unnamed Cr. ${ }^{\text {A }}$ | 08/10/01 | $60^{\circ} 36^{\prime} 03.6^{\prime \prime}$ | $124^{\circ} 13^{\prime} 54.0^{\prime \prime}$ | ANG | BLTR | 400 | 736 | Adult | Stomach - terrestrial and aquatic insects |
| 36 | - | Unnamed Cr. ${ }^{\text {A }}$ | 08/10/01 | $60^{\circ} 36^{\prime} 03.6^{\prime \prime}$ | $124^{\circ} 13^{\prime} 54.0^{\prime \prime}$ | ANG | BLTR | 204 | 130 | Juvenile | Stom |
| 37 | MC0018 | Unnamed Cr. ${ }^{\text {A }}$ | 08/10/01 | $60^{\circ} 36^{\prime} 03.6^{\prime \prime}$ | $124^{\circ} 13^{\prime} 54.0^{\prime \prime}$ | ANG | BLTR | 202 | 200 | Juvenile | - |
| 38 | MC0019 | Unnamed Cr. ${ }^{\text {A }}$ | 08/10/01 | $60^{\circ} 36^{\prime} 03.6^{\prime \prime}$ | $124^{\circ} 13^{\prime} 54.0^{\prime \prime}$ | ANG | BLTR | 284 | 240 | Adult | - |
| 39 | - | Fast Cr . | 08/13/01 | $61^{\circ} 36^{\prime} 36.0^{\prime \prime}$ | $124^{\circ} 48^{\prime} 36.0^{\prime \prime}$ | EF | SLSC | $\sim 50$ | - | - | - |
| 40 | - | Funeral Cr. | 08/13/01 | $61^{\circ} 36^{\prime} 22.9^{\prime \prime}$ | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 180 | 60 | Juvenile | - |
| 41 | - | Funeral Cr. | 08/13/01 | $61^{\circ} 36^{\prime} 22.9$ " | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 142 | 30 | Juvenile | - |
| 42 | - | Funeral Cr. | 08/13/01 | $61^{\circ} 36^{\prime} 22.9$ " | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 179 | 50 | Juvenile | - |
| 43 | - | Funeral Cr. | 08/13/01 | $61^{\circ} 36^{\prime} 22.9$ " | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 155 | 40 | Juvenile | - |
| 44 | - | Funeral Cr. | 08/13/01 | $61^{\circ} 36^{\prime} 22.9{ }^{\prime \prime}$ | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 180 | 70 | Juvenile | - |
| 45 | - | Funeral Cr. | 08/13/01 | $61^{\circ} 36^{\prime} 22.9$ " | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 170 | 50 | Juvenile | - |
| 46 | MC0017 | Funeral Cr. | 08/13/01 | $61^{\circ} 36^{\prime} 22.9{ }^{\prime \prime}$ | $124^{\circ} 48^{\prime} 28.8{ }^{\prime \prime}$ | EF | BLTR | 208 | 100 | Adult | - |
| 47 | MC0026 | Funeral Cr. | 08/13/01 | $61^{\circ} 36^{\prime} 22.9{ }^{\prime \prime}$ | $124^{\circ} 48^{\prime} 28.8{ }^{\prime \prime}$ | EF | BLTR | 281 | 360 | Adult | - |
| 48 | MC0029 | Funeral Cr. | 08/13/01 | $61^{\circ} 36^{\prime} 22.9{ }^{\prime \prime}$ | $124^{\circ} 48^{\prime} 28.8{ }^{\prime \prime}$ | EF | BLTR | 292 | 280 | Adult | - |
| 49 | MC0030 | Funeral Cr. | 08/13/01 | $61^{\circ} 36{ }^{\prime} 22.9{ }^{\prime \prime}$ | $124^{\circ} 48^{\prime} 28.8{ }^{\prime \prime}$ | EF | BLTR | 329 | 360 | Adult | - |

Table 6. (Continued).

| No. | Fish ID ${ }^{1}$ | Location ${ }^{2}$ | Date <br> M/D/Y | Latitude (N) | Longitude (W) | Method ${ }^{3}$ | Species | $\begin{gathered} \hline \text { FL } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | Wt (g) | Life Stage Assigned | Notes ${ }^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | MC0031 | Funeral Cr. | 08/13/01 | $61^{\circ} 36^{\prime} 22.9^{\prime \prime}$ | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 302 | 370 | Adult | - |
| 51 | 47267 | Funeral Cr. | 08/13/01 | $61^{\circ} 36^{\prime} 22.9{ }^{\prime}$ | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 168 | 53 | Juvenile | Stomach - Aquatic and terrestrial insects |
| 52 | 47268 | Funeral Cr. | 08/13/01 | $61^{\circ} 36^{\prime} 22.9{ }^{\prime}$ | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 266 | 204 | Adult | Stomach - Aquatic and terrestrial insects |
| 53 | 47269 | Funeral Cr. | 08/13/01 | $61^{\circ} 36^{\prime} 22.9{ }^{\prime}$ | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 354 | 495 | Adult | Eggs retained from previous year |
| 54 | 47270 | Funeral Cr. | 08/13/01 | $61^{\circ} 36^{\prime} 22.9{ }^{\prime}$ | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 185 | 72 | Juvenile | Stomach - Aquatic and terrestrial insects |
| 55 | MC0032 | Funeral Cr. | 08/14/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 272 | 220 | Adult | - |
| 56 | MC0033 | Funeral Cr. | 08/14/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 307 | 315 | Adult | - |
| 57 | MC0034 | Funeral Cr. | 08/14/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 370 | 500 | Adult | - |
| 58 | - | Funeral Cr. | 08/14/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 70 | 1 | Juvenile | - |
| 59 | - | Funeral Cr. | 08/14/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 78 | 0.9 | Juvenile | - |
| 60 | - | Funeral Cr. | 08/14/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 70 | 0.9 | Juvenile | - |
| 61 | - | Funeral Cr. | 08/14/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 70 | 0.7 | Juvenile | - |
| 62 | - | Funeral Cr. | 08/14/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 75 | 0.5 | Juvenile | - |
| 63 | - | Funeral Cr. | 08/14/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 75 | 0.9 | Juvenile | - |
| 64 | - | Funeral Cr. | 08/14/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 80 | 0.9 | Juvenile | - |
| 65 | - | Funeral Cr. | 08/14/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 75 | 0.8 | Juvenile | - |
| 66 | - | Funeral Cr. | 08/14/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 80 | 1 | Juvenile | - |
| 67 | 47263 | Funeral Cr. | 08/14/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 71 | 2.8 | Juvenile | - |
| 68 | 47264 | Funeral Cr. | 08/14/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 64 | 2.3 | Juvenile | - |
| 69 | 47265 | Funeral Cr. | 08/14/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 323 | 387 | Adult | Stomach - Aquatic and terrestrial insects |
| 70 | 47266 | Funeral Cr. | 08/14/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 289 | 281 | Adult | Stomach - Aquatic and terrestrial insects |
| 71 | MC0035 | Galena Cr. | 08/14/01 | $61^{\circ} 32{ }^{\prime} 43.3^{\prime \prime}$ | $124^{\circ} 47^{\prime} 03.2^{\prime \prime}$ | ANG | BLTR | 321 | 350 | Adult | - |
| 72 | MC0037 | South Nahanni R. | 08/15/01 | $61^{\circ} 14^{\prime} 57.8^{\prime \prime}$ | $124^{\circ} 24^{\prime} 29.3^{\prime \prime}$ | ANG | BLTR | 330 | 250 | Adult | - |
| 73 | MC0038 | South Nahanni R. | 08/15/01 | $61^{\circ} 14^{\prime} 57.8^{\prime \prime}$ | $124^{\circ} 24^{\prime} 29.3$ " | ANG | BLTR | 402 | 750 | Adult | - |
| 74 | - | Prairie Cr. | 08/15/01 | $61^{\circ} 14^{\prime} 57.5^{\prime \prime}$ | $124^{\circ} 24^{\prime} 28.9^{\prime \prime}$ | ANG | ARGR | - | - | - | Caught + 20-30 ARGR ( 200-500 mm) |
| 75 | - | South Nahanni R. | 08/15/01 | $61^{\circ} 14^{\prime} 57.8^{\prime \prime}$ | $124^{\circ} 24^{\prime} 29.3$ " | ANG | INCU | - | - | Adult | Captured $1 \mathrm{INCU}(\sim 700 \mathrm{~mm})$ |

Table 6. (Continued).

| No. | Fish ID ${ }^{1}$ | Location ${ }^{2}$ | $\begin{gathered} \text { Date } \\ \text { M/D/Y } \end{gathered}$ | Latitude (N) | Longitude (W) | Method ${ }^{3}$ | Species | $\begin{gathered} \hline \text { FL } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | Wt (g) | Life Stage Assigned | Notes ${ }^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 76 | - | South Nahanni R. | 08/15/01 | $61^{\circ} 33^{\prime} 31.8^{\prime \prime}$ | $124^{\circ} 47^{\prime} 07.1^{\prime \prime}$ | ANG | ARGR | - | - | Adult | Captured additional 3 ARGR ( $\sim 300-400 \mathrm{~mm}$ ) |
| 77 | 47325 | South Nahanni R. | 08/15/01 | $61^{\circ} 14^{\prime} 57.8^{\prime \prime}$ | $124^{\circ} 24^{\prime} 29.3^{\prime \prime}$ | ANG | BLTR | 281 | 236 | - | Stomach - small larval insects |
| 78 | MC0040 | Jorgenson Cr. | 08/16/01 | $61^{\circ} 31^{\prime} 46.6^{\prime \prime}$ | $126^{\circ} 05^{\prime} 44.0^{\prime \prime}$ | ANG | BLTR | 245 | 145 | Adult | - |
| 79 | MC0041 | Jorgenson Cr. | 08/16/01 | $61^{\circ} 31^{\prime} 46.6^{\prime \prime}$ | $126^{\circ} 05^{\prime} 44.0^{\prime \prime}$ | ANG | BLTR | 320 | 455 | Adult | - |
| 80 | MC0042 | Jorgenson Cr. | 08/16/01 | $61^{\circ} 31^{\prime} 46.6^{\prime \prime}$ | $126^{\circ} 05^{\prime} 44.0^{\prime \prime}$ | ANG | BLTR | 336 | 355 | Adult | - |
| 81 | MC0043 | South Nahanni R. | 08/17/01 | $61^{\circ} 30^{\prime} 40.3^{\prime \prime}$ | $126^{\circ} 05^{\prime} 07.3^{\prime \prime}$ | ANG | BLTR | 510 | 1250 | Adult | - |
| 82 | MC0044 | Marengo Cr. | 08/17/01 | $61^{\circ} 35^{\prime} 32.1^{\prime \prime}$ | $125^{\circ} 48^{\prime} 02.6^{\prime \prime}$ | EF | BLTR | 359 | 475 | Adult | - |
| 83 | - | Marengo Cr. | 08/17/01 | $61^{\circ} 35^{\prime} 32.1^{\prime \prime}$ | $125^{\circ} 48^{\prime} 02.6^{\prime \prime}$ | EF | MTWF | $\sim 150$ | - | - | - |
| 84 | - | Marengo Cr. | 08/17/01 | $61^{\circ} 35^{\prime} 32.1^{\prime \prime}$ | $125^{\circ} 48^{\prime} 02.6^{\prime \prime}$ | EF | ARGR | - | - | - | Captured additional 15 ARGR ( $\sim 200-350 \mathrm{~mm}$ ) |
| 85 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 22.9^{\prime \prime}$ | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 168 | 50 | Juvenile | - |
| 86 | MC0031 | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 22.9^{\prime \prime}$ | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 302 | 260 | Adult | - |
| 87 | MC0029 | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 22.9^{\prime \prime}$ | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 278 | 240 | Adult | - |
| 88 | MC0032 | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 250 | 200 | Adult | - |
| 89 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 82 | 6.5 | Juvenile | - |
| 90 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 117 | 18 | Juvenile | - |
| 91 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 81 | 5 | Juvenile | - |
| 92 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 80 | 5 | Juvenile | - |
| 93 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 76 | 4 | Juvenile | - |
| 94 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 80 | 6 | Juvenile | - |
| 95 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 78 | 5.5 | Juvenile | - |
| 96 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 64 | 3 | Juvenile | - |
| 97 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 73 | 4 | Juvenile | - |
| 98 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 76 | 3.9 | Juvenile | - |
| 99 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 83 | 6 | Juvenile | - |
| 100 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 74 | 5 | Juvenile | - |
| 101 | FT0851 | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 258 | 230 | Adult | - |

Table 6. (Continued).

| No. | Fish ID ${ }^{1}$ | Location ${ }^{2}$ | $\begin{gathered} \hline \text { Date } \\ \text { M/D/Y } \end{gathered}$ | Latitude (N) | Longitude (W) | Method ${ }^{3}$ | Species | $\begin{gathered} \hline \text { FL } \\ (\mathrm{mm}) \\ \hline \end{gathered}$ | Wt (g) | Life Stage Assigned | Notes ${ }^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 102 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 70 | 3.8 | Juvenile | - |
| 103 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 77 | 3.5 | Juvenile | - |
| 104 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 79 | 5 | Juvenile | - |
| 105 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 77 | 4 | Juvenile | - |
| 106 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 75 | 4 | Juvenile | - |
| 107 | - | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | SLSC | - | - | - | Captured additional 30 SLSC ( $\sim 30-100 \mathrm{~mm}$ ) |
| 108 | 47330 | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 22.9^{\prime}$ | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 272 | 246 | Adult | Stomach - small BLTR \# 47331 |
| 109 | 47331 | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 22.9^{\prime}$ | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 101 | 10 | Juvenile | Stomach - small larval insects |
| 110 | 47332 | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 22.9^{\prime}$ | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 67 | 3 | Juvenile | - |
| 111 | 47333 | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 22.9^{\prime}$ | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 61 | 2 | Juvenile | Stomach - aquatic insects |
| 112 | 47334 | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 22.9^{\prime}$ | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 35 | 1 | Juvenile | - |
| 113 | 47335 | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 22.9^{\prime}$ | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 38 | 1 | Juvenile | - |
| 114 | 47336 | Funeral Cr. | 09/11/01 | $61^{\circ} 36^{\prime} 22.9^{\prime}$ | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 99 | 14 | Juvenile | Stomach - aquatic insects |
| 115 | 47337 | Funeral Cr. | 09/11/01 | $61^{\circ} 36{ }^{\prime} 22.9^{\prime}$ | $124^{\circ} 48^{\prime} 28.8^{\prime \prime}$ | EF | BLTR | 139 | 28 | Juvenile | Stomach - insects \& fish |
| 116 | FT0852 | Funeral Cr. | 09/13/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | ANG | BLTR | 284 | 250 | Adult | Spawning BLTR (female) |
| 117 | FT0853 | Funeral Cr. | 09/13/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | ANG | BLTR | 299 | 180 | Adult | - |
| 118 | FT0854 | Funeral Cr. | 09/13/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 268 | 200 | Adult | Spawning BLTR (female) |
| 119 | - | Funeral Cr. | 09/13/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 150 | 34 | Juvenile | - |
| 120 | - | Funeral Cr. | 09/13/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 84 | 4 | Juvenile | - |
| 121 | - | Funeral Cr. | 09/13/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 143 | 27 | Juvenile | - |
| 122 | - | Funeral Cr. | 09/13/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 112 | 14 | Juvenile | - |
| 123 | - | Funeral Cr. | 09/13/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 148 | 33 | Juvenile | - |
| 124 | - | Funeral Cr. | 09/13/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 134 | 28 | Juvenile | - |
| 125 | - | Funeral Cr. | 09/13/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3$ " | EF | BLTR | 174 | 50 | Juvenile | - |
| 126 | - | Funeral Cr. | 09/13/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3^{\prime \prime}$ | EF | BLTR | 154 | 37 | Juvenile | - |
| 127 | - | Funeral Cr. | 09/13/01 | $61^{\circ} 36^{\prime} 37.5^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3$ " | EF | BLTR | 150 | 31 | Juvenile | - |

Table 6. (Continued).

| No. | Fish ID ${ }^{1}$ | $\text { Location }^{2}$ | $\begin{gathered} \hline \text { Date } \\ \text { M/D/Y } \\ \hline \end{gathered}$ | Latitude (N) | Longitude (W) | Method ${ }^{3}$ | Species | $\begin{gathered} \text { FL } \\ (\mathrm{mm}) \end{gathered}$ | Wt (g) | Life Stage Assigned | $\text { Notes }{ }^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 128 | - | Funeral Cr. | 09/13/01 | $61^{\circ} 36^{\prime} 37.5{ }^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3{ }^{\prime \prime}$ | EF | BLTR | 149 | 34 | Juvenile | - |
| 129 | - | Funeral Cr. | 09/13/01 | $61^{\circ} 36^{\prime} 37.5{ }^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3{ }^{\prime \prime}$ | EF | BLTR | 129 | 24 | Juvenile | - |
| 130 | - | Funeral Cr. | 09/13/01 | $61^{\circ} 36^{\prime} 37.5$ " | $124^{\circ} 44^{\prime} 12.3{ }^{\prime \prime}$ | EF | BLTR | 145 | 25 | Juvenile | - |
| 131 | - | Funeral Cr. | 09/13/01 | $61^{\circ} 36^{\prime} 37.5$ " | $124^{\circ} 44^{\prime} 12.3{ }^{\prime \prime}$ | EF | BLTR | 147 | 32.5 | Juvenile | - |
| 132 | - | Funeral Cr. | 09/13/01 | $61^{\circ} 36^{\prime} 37.5{ }^{\prime \prime}$ | $124^{\circ} 44^{\prime} 12.3{ }^{\prime \prime}$ | EF | BLTR | 65 | 1 | Juvenile | - |
| 133 | FT0855 | Prairie Cr. | 09/13/01 | $61^{\circ} 36^{\prime} 29.3$ " | $124^{\circ} 49^{\prime} 13.9{ }^{\prime \prime}$ | EF | BLTR | 430 | 245 | Adult | - |
| 134 | - | Prairie Cr . | 09/13/01 | $61^{\circ} 36^{\prime} 29.3$ " | $124^{\circ} 49^{\prime} 13.9{ }^{\prime \prime}$ | EF | BLTR | 175 | 48 | Juvenile | - |
| 135 | - | Marengo Cr. | 09/14/01 | $61^{\circ} 35^{\prime} 32.1{ }^{\prime \prime}$ | $125^{\circ} 48^{\prime} 02.6{ }^{\prime \prime}$ | EF | MTWF | 119 | 13 | - | - |
| 136 | - | Marengo Cr. | 09/14/01 | $61^{\circ} 35^{\prime} 32.1{ }^{\prime \prime}$ | $125^{\circ} 48^{\prime} 02.6{ }^{\prime \prime}$ | EF | ARGR | 276 | 190 | - | - |
| 137 | - | Marengo Cr. | 09/14/01 | $61^{\circ} 35^{\prime} 32.1{ }^{\prime \prime}$ | $125^{\circ} 48^{\prime} 02.6{ }^{\prime \prime}$ | EF | ARGR | 181 | 54 | - | - |
| 138 | - | Marengo Cr. | 09/14/01 | $61^{\circ} 35^{\prime} 32.1{ }^{\prime \prime}$ | $125^{\circ} 48^{\prime} 02.6{ }^{\prime \prime}$ | EF | ARGR | 206 | 83 | - | - |
| 139 | - | Marengo Cr. | 09/14/01 | $61^{\circ} 35^{\prime} 32.1{ }^{\prime \prime}$ | $125^{\circ} 48^{\prime} 02.6{ }^{\prime \prime}$ | EF | ARGR | 300 | 255 | - | - |
| 140 | 47596 | Irvine Cr . | 09/15/01 | $61^{\circ} 18^{\prime} 08.7{ }^{\prime \prime}$ | $124^{\circ} 25^{\prime} 24.1{ }^{\prime \prime}$ | EF | BLTR | 934 | 456 | Adult | Stomach - small terrestrial insects, lesion LS |
| 141 | 47338 | Irvine Cr . | 09/15/01 | $61^{\circ} 18^{\prime} 08.7{ }^{\prime \prime}$ | $124^{\circ} 25^{\prime} 24.1{ }^{\prime \prime}$ | ANG | BLTR | 626 | 2870 | Adult | Stomach - fish (2) - ARGR? |
| 142 | - | Irvine Cr . | 09/15/01 | $61^{\circ} 18^{\prime} 08.7{ }^{\prime \prime}$ | $124^{\circ} 25^{\prime} 24.1{ }^{\prime \prime}$ | ANG | ARGR | - | - | Adult | Captured + $\sim 20$ ARGR ( $\sim 300-500 \mathrm{~mm}$ ) |
| 143 | - | Sheaf Cr. | 09/16/01 | - | - | EF | SLSC | - | - | - | Captured additional $\sim 6$ SLSC ( $\sim 30-70 \mathrm{~mm}$ ) |
| 144 | 47329 | Keele R. | 09/20/01 | - | - | ANG | BLTR | 529 | 1268 | Adult | Fish angled by local resident |
| 145 | - | Dodo Cr. | 09/22/01 | $64^{\circ} 50^{\prime} 41.7{ }^{\prime \prime}$ | $127^{\circ} 14^{\prime} 46.4{ }^{\prime \prime}$ | EF | SLSC | - | - | - | Captured additional $\sim 10$ SLSC |
| 146 | - | Dodo Cr. | 09/22/01 | $64^{\circ} 50^{\prime} 41.7{ }^{\prime \prime}$ | $127^{\circ} 14^{\prime} 46.4 "$ | EF | ARGR | - | - | - | Observed 1 ARGR |
| 147 | - | Dodo Cr. | 09/22/01 | $64^{\circ} 53^{\prime} 07.4{ }^{\prime \prime}$ | $127^{\circ} 13^{\prime} 30.0^{\prime \prime}$ | EF | ARGR | - | - | Adult | Captured 1 ARGR ( $\sim 300 \mathrm{~mm}$ ) |
| 148 | - | Dodo Cr. | 09/22/01 | $64^{\circ} 52^{\prime} 59.3$ " | $127^{\circ} 13^{\prime} 39.5{ }^{\prime \prime}$ | EF | ARGR | - | - | - | Captured additional $\sim 20$ ARGR in small pool |
| 149 | - | $\text { Unnamed } \mathrm{Cr}^{\mathrm{B}}$ | 09/23/01 | $64^{\circ} 14^{\prime} 32.6{ }^{\prime \prime}$ | $125^{\circ} 59^{\prime} 19.5{ }^{\prime \prime}$ | EF | ARGR | - | - | Juvenile | Captured 2 YOY ARGR |
| 150 | - | $\text { Unnamed } \mathrm{Cr}{ }^{\mathrm{B}}$ | 09/23/01 | $64^{\circ} 13^{\prime} 34.9{ }^{\prime}$ | $126^{\circ} 05^{\prime} 08.5{ }^{\prime \prime}$ | EF | ARGR | - | - | Adult | Captured 1 ARGR ( $\sim 300 \mathrm{~mm}$ ) |
| 151 | - | $\text { Unnamed } \mathrm{Cr} .{ }^{\mathrm{B}}$ | 09/23/01 | $64^{\circ} 13^{\prime} 34.9{ }^{\prime}$ | $126^{\circ} 05^{\prime} 08.5^{\prime \prime}$ | EF | MTWF | - | - | - | Captured 1 MTWF ( $\sim 120 \mathrm{~mm}$ ) |
| 152 | - | $\text { Unnamed } \mathrm{Cr}{ }^{\mathrm{B}}$ | 09/23/01 | $64^{\circ} 13^{\prime} 34.9{ }^{\prime}$ | $126^{\circ} 05^{\prime} 08.5{ }^{\prime \prime}$ | EF | SLSC | - | - | - | Captured 2 SLSC |
| 153 | - | Unnamed Cr. ${ }^{\text {B }}$ | 09/23/01 | $64^{\circ} 10^{\prime} 56.6^{\prime \prime}$ | $126^{\circ} 09^{\prime} 54.6{ }^{\prime \prime}$ | EF | ARGR | - | - | - | Captured additional $\sim 40$ ARGR |

Table 6. (Continued).

| No. | Fish ID ${ }^{1}$ | Location ${ }^{2}$ | Date <br> M/D/Y | Latitude (N) | Longitude (W) | Method ${ }^{3}$ | Species | $\begin{gathered} \hline \text { FL } \\ (\mathrm{mm}) \end{gathered}$ | Wt (g) | Life Stage Assigned | Notes ${ }^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 154 | - | Unnamed Cr. ${ }^{\text {B }}$ | 09/23/01 | $64^{\circ} 10^{\prime} 56.6^{\prime \prime}$ | $126^{\circ} 09^{\prime} 54.6^{\prime \prime}$ | EF | MTWF | - | - | - | Captured 3 MTWF |
| 155 | - | Unnamed Cr. ${ }^{\text {B }}$ | 09/23/01 | $64^{\circ} 08^{\prime} 32.6^{\prime \prime}$ | $12609^{\prime} 06.5{ }^{\prime \prime}$ | EF | ARGR | - | - | - | Captured 4 ARGR ( $\sim 150-350 \mathrm{~mm}$ ) |
| 156 | - | Unnamed Cr. ${ }^{\text {B }}$ | 09/23/01 | $64^{\circ} 08^{\prime} 32.6^{\prime \prime}$ | $12609^{\prime} 06.5$ | EF | SLSC | - | - | - | Captured 1 SLSC |
| 157 | - | Saline Cr. | 09/24/01 | $64^{\circ} 18^{\prime} 55.4{ }^{\prime \prime}$ | $124^{\circ} 24^{\prime} 13.6^{\prime \prime}$ | EF | ARGR | - | - | - | Captured additional $\sim 30$ ARGR ( $\sim 200-400$ mm ) |
| 158 | - | Saline Cr. | 09/24/01 | $64^{\circ} 18^{\prime} 55.4^{\prime \prime}$ | $124^{\circ} 24^{\prime} 13.6^{\prime \prime}$ | EF | SLSC | - | - | - | Captured 2 SLSC |
| 159 | FT0856 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4{ }^{\prime \prime}$ | ANG | BLTR | 544 | 1650 | Adult | - |
| 160 | FT0857 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4 "$ | ANG | BLTR | 504 | 1600 | Adult | - |
| 161 | FT0858 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3{ }^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4{ }^{\prime \prime}$ | ANG | BLTR | 662 | 2970 | Adult | - |
| 162 | FT0859 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3$ " | $126^{\circ} 11^{\prime} 08.4{ }^{\prime \prime}$ | ANG | BLTR | 574 | 2000 | Adult | - |
| 163 | FT0860 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3{ }^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4{ }^{\prime \prime}$ | ANG | BLTR | 671 | 3250 | Adult | - |
| 164 | FT0861 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4 "$ | ANG | BLTR | 589 | 2250 | Adult | - |
| 165 | FT0862 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4{ }^{\prime \prime}$ | ANG | BLTR | 611 | 2350 | Adult | - |
| 166 | FT0863 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4{ }^{\prime \prime}$ | ANG | BLTR | 586 | 2250 | Adult | - |
| 167 | FT0864 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4 "$ | ANG | BLTR | 444 | 850 | Adult | - |
| 168 | FT0865 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4{ }^{\prime \prime}$ | ANG | BLTR | 636 | 2620 | Adult | - |
| 169 | FT0866 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4 "$ | ANG | BLTR | 590 | 1950 | Adult | - |
| 170 | 47119 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4{ }^{\prime \prime}$ | ANG | BLTR | 610 | 2360 | Adult | Female (resting) |
| 171 | 47339 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4{ }^{\prime \prime}$ | EF | BLTR | 711 | 423 | Adult | Stomach - fish (ARGR?), insects, lesion RS |
| 172 | 47340 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4{ }^{\prime \prime}$ | EF | BLTR | 604 | 1917 | Adult | - |
| 173 | 47341 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3$ " | $126^{\circ} 11^{\prime} 08.4 "$ | EF | BLTR | 568 | 1823 | Adult | Stomach - small larval insects |
| 174 | 47342 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3$ " | $126^{\circ} 11^{\prime} 08.4{ }^{\prime \prime}$ | EF | BLTR | 528 | 1561 | Adult | Stomach - insects, fish (unidentifiable) |
| 175 | 47343 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3$ " | $126^{\circ} 11^{\prime} 08.4 "$ | EF | BLTR | 639 | 2771 | Adult | Stomach - insects, fish (unidentifiable) |
| 176 | 47344 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4{ }^{\prime \prime}$ | EF | BLTR | 661 | 3379 | Adult | Stomach empty |
| 177 | 47345 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4{ }^{\prime \prime}$ | EF | BLTR | 642 | 3144 | Adult | Stomach - small larval insects |

Table 6. (Continued).

| No. | Fish ID ${ }^{1}$ | Location ${ }^{2}$ | $\begin{gathered} \text { Date } \\ \text { M/D/Y } \\ \hline \end{gathered}$ | Latitude (N) | Longitude (W) | Method ${ }^{3}$ | Species | FL (mm) | Wt (g) | Life Stage Assigned | Notes ${ }^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 178 | 47346 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3{ }^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4{ }^{\prime \prime}$ | EF | BLTR | 561 | 1875 | Adult | Stomach - insects, fish (unidentifiable) |
| 179 | 47347 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3{ }^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4 "$ | EF | BLTR | 550 | 1735 | Adult | Stomach empty |
| 180 | 47348 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3{ }^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4 "$ | EF | BLTR | 558 | 1954 | Adult | Stomach empty |
| 181 | 47349 | Drum Lake outlet | 09/25/01 | $63^{\circ} 49^{\prime} 04.3{ }^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4 "$ | EF | BLTR | 635 | 2480 | Adult | Stomach - insects, fish (2 LNSC) |
| 182 | 47350 | Unnamed Cr. ${ }^{\text {C }}$ | 09/27/01 | $63^{\circ} 48^{\prime} 01.0^{\prime \prime}$ | $126^{\circ} 09^{\prime} 40.1^{\prime \prime}$ | EF | BLTR | 49 | 0.9 | Juvenile | - |
| 183 | 47351 | $\text { Unnamed } \mathrm{Cr} .{ }^{\mathrm{C}}$ | 09/27/01 | $63^{\circ} 48^{\prime} 01.0^{\prime \prime}$ | $126^{\circ} 09^{\prime} 40.1^{\prime \prime}$ | EF | BLTR | 57 | 1.8 | Juvenile | - - |
| 184 | - | Unnamed Cr. ${ }^{\text {C }}$ | 09/27/01 | $63^{\circ} 48^{\prime} 01.0^{\prime \prime}$ | $126^{\circ} 09^{\prime} 40.1^{\prime \prime}$ | EF | ARGR | - | - | Juvenile | Captured additional ~ 75-100 YOY/Juvenile ARGR |
| 185 | - | $\text { Unnamed } \mathrm{Cr} .^{\mathrm{C}}$ | 09/27/01 | $63^{\circ} 48^{\prime} 01.0^{\prime \prime}$ | $126^{\circ} 09^{\prime} 40.1{ }^{\prime \prime}$ | EF | SLSC | - | - | - | Captured additional $\sim 20$ SLSC |
| 186 | - | $\text { Unnamed } \mathrm{Cr} .^{\mathrm{C}}$ | 09/27/01 | $63^{\circ} 48^{\prime} 01.0^{\prime \prime}$ | $126^{\circ} 09^{\prime} 40.1{ }^{\prime \prime}$ | EF | LKCH | - | - | - | Captured additional $\sim 5$ LKCH |
| 187 | - | Drum Lake outlet | 09/27/01 | $63^{\circ} 49^{\prime} 04.3{ }^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4 "$ | EF | LNSC | - | - | - | - |
| 188 | - | Drum Lake outlet | 09/27/01 | $63^{\circ} 49^{\prime} 04.3{ }^{\prime \prime}$ | $126^{\circ} 11^{\prime} 08.4 "$ | EF | LKCH | - | - | - | - |
| 189 | - | Drum Lake outlet | 09/27/01 | $63^{\circ} 49^{\prime} 04.3$ " | $126^{\circ} 11^{\prime} 08.4 "$ | EF | BURB | - | - | Adult | - |
| 190 | - | Bluefish Cr. | 09/27/01 | $63^{\circ} 47^{\prime} 48.0^{\prime \prime}$ | $126^{\circ} 09^{\prime} 12.3$ " | EF | ARGR | - | - | Juvenile | Captured additional ~300 ARGR including YOY |
| 191 | - | Bluefish Cr. | 09/27/01 | $63^{\circ} 47^{\prime} 48.0^{\prime \prime}$ | $126^{\circ} 09^{\prime} 12.3$ " | EF | BURB | - | - | - | Captured additional $\sim 20$ BURB |
| 191 | - | Bluefish Cr. | 09/27/01 | $63^{\circ} 47^{\prime} 48.0^{\prime \prime}$ | $126^{\circ} 09^{\prime} 12.3$ " | EF | SLSC | - | - | - | Captured additional $\sim 20$ SLSC |

[^0]Table 7. Biological data collected from both live- and dead-sampled bull trout captured in streams and rivers from the Northwest Territories in 2000 and 2001.

| Fish ID ${ }^{1}$ | $\begin{gathered} \text { Date } \\ \text { M/D/Y } \end{gathered}$ | No. | Location ${ }^{2}$ | $\begin{gathered} \text { FL } \\ (\mathrm{mm}) \end{gathered}$ | Wt <br> (g) | Sex | $\text { Mat. }{ }^{3}$ | Gonad Wt (g) | Age | Fish ${ }^{4}$ fate | $\begin{gathered} \text { Adipose }^{5} \\ \text { fin clip } \\ (\mathbf{Y} / \mathbf{N}) \end{gathered}$ | $\begin{gathered} \text { Life }^{6} \\ \text { history } \end{gathered}$ | Life $^{7}$ stage | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 47267 | 08/13/01 | 1 | Funeral Cr. | 168 | 53 | 1 | 06 | - | 4 | DS | - | SR | J | Stomach contents - Aquatic and terrestrial insects/larvae |
| 47268 | 08/13/01 | 2 | Funeral Cr. | 266 | 204 | 2 | 02 | 0.7 | 7 | DS | - | SR | A | Stomach contents - Aquatic and terrestrial insects/larvae |
| 47269 | 08/13/01 | 3 | Funeral Cr. | 354 | 495 | 2 | 05 | 8.0 |  | DS | - | SR |  | Eggs retained from previous year |
| 47270 | 08/13/01 | 4 | Funeral Cr. | 185 | 72 | 1 | 06 |  | 5 | DS | - | SR | J | Stomach contents - Aquatic and terrestrial insects/larvae |
| 47263 | 08/14/01 | 5 | Funeral Cr. | 71 | 2.8 | - | - | - | 1 | DS | - | SR | J | - |
| 47264 | 08/14/01 | 6 | Funeral Cr. | 64 | 2.3 | - | - | - | 1 | DS | - | SR | J | - |
| 47265 | 08/14/01 | 7 | Funeral Cr. | 323 | 387 | 1 | 07 | 5.2 | 11 | DS | - | SR | J | Stomach contents - Aquatic and terrestrial insects/larvae |
| 47266 | 08/14/01 | 8 | Funeral Cr. | 289 | 281 | 1 | 07 | 3.8 | 9 | DS | - | SR | J | Stomach - Aquatic and terrestrial insects(grasshopper)/larvae |
| 47257 | 07/24/00 | 9 | Unnamed Cr. ${ }^{\text {A }}$ | 289 | 235 | 2 | 01 | 1.0 | 8 | DS | - | SR | A | - |
| 47258 | 07/24/00 | 10 | Unnamed Cr. ${ }^{\text {A }}$ | 355 | 479 | - | - | - | 8 | DS | - | SR | A | - |
| 47259 | 08/05/00 | 11 | Keele R. | 512 | 1435 | 1 | 10 | 1.0 | 10 | DS | - | F | A | - |
| 47260 | 08/05/00 | 12 | Keele R. | 533 | 1341 | 1 | 10 | 4.3 | 10 | DS | - | F | A | - |
| 47326 | 08/10/01 | 13 | Unnamed Cr. ${ }^{\text {A }}$ | 270 | 200 | 2 | 05 | 0.8 | 8 | DS | - | SR | A | Stomach - terrestrial (grasshopper) and larval insects |
| 47327 | 08/10/01 | 14 | Unnamed Cr. ${ }^{\text {A }}$ | 276 | 253 | 1 | 06 | 1.5 | 7 | DS | - | SR |  | Stomach contents - sculpin (SLSC) |
| 47328 | 08/10/01 | 15 | Unnamed Cr. ${ }^{\text {A }}$ | 400 | 736 | 1 | 10 | 8.9 | 9 | DS | - | SR |  | Stomach - terrestrial (small worms) and aquatic insects |
| 47325 | 08/15/01 | 16 | South Nahanni R. | 281 | 236 | 1 | 10 | - | 11 | DS | - | SR |  | Stomach contents - small larval insects |
| 47330 | 09/11/01 | 17 | Funeral Cr. | 272 | 246 | 2 | 02 | 1.5 | 11 | DS | - | SR |  | Stomach - Ants, wasp, insect larvae, small BLTR \# 47331 |
| 47331 | 09/11/01 | 18 | Funeral Cr. | 101 | 10 | - | 00 | - | 2 | DS | - | SR |  | Stomach contents - small larval insects |
| 47332 | 09/11/01 | 19 | Funeral Cr. | 67 | 3 | - | 00 | - | 1 | DS | - | SR | J | Too small \& rotten to sex |
| 47333 | 09/11/01 | 20 | Funeral Cr. | 61 | 2 | 2 | 01 | - | 1 | DS | - | SR |  | Stomach contents - aquatic insects |
| 47334 | 09/11/01 | 21 | Funeral Cr. | 35 | 1 | 2 | 01 | - | 0 | DS | - | SR | YOY | - |
| 47335 | 09/11/01 | 22 | Funeral Cr. | 38 | 1 | - | 00 | - | 0 | DS | - | SR | YOY | - |
| 47336 | 09/11/01 | 23 | Funeral Cr. | 99 | 14 | 2 | 01 | 0.1 | 2 | DS | - | SR | J | Recapture - adipose fin clip from Aug |
| 47337 | 09/11/01 | 24 | Funeral Cr. | 139 | 28 | 2 | 01 | 1.0 | 3 | DS | - | SR |  | Stomach - aquatic and terrestrial insects, fish (unidentifiable) |

Table 7. (Continued).

| Fish ID ${ }^{1}$ | $\begin{gathered} \text { Date } \\ \text { M/D/Y } \end{gathered}$ | No. | Location ${ }^{2}$ | $\underset{(\mathrm{mm})}{\mathrm{FL}}$ | Wt (g) | Sex | $\text { Mat. }{ }^{3}$ | Gonad Wt (g) | Age | $\begin{aligned} & \text { Fish }^{4} \\ & \text { fate } \end{aligned}$ | $\begin{gathered} \text { Adipose }^{5} \\ \text { fin clip } \\ (\mathbf{Y} / \mathbf{N}) \\ \hline \hline \end{gathered}$ | $\begin{gathered} \text { Life }^{6} \\ \text { history } \end{gathered}$ | $\begin{aligned} & \text { Life }^{7} \\ & \text { stage } \end{aligned}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 47261 | 09/13/00 | 25 | Drum L. outlet | 561 | 1806 | 2 | 05 | 9.3 | 9 | DS | - | AF | A | Observed 3 other BLTR and (>10) ARGR |
| 47262 | 09/13/00 | 26 | Drum L. outlet | 583 | 2161 | 2 | 05 | 9.8 | 14 | DS | - | AF | A | - |
| 47596 | 09/15/01 | 27 | Irvine Cr. | 626 | 2870 | 2 | 05 | 17.2 | 12 | DS | - | F |  | Stomach contents - fish (2) - ARGR possible? |
| 47338 | 09/15/01 | 28 | Irvine Cr . | 934 | 456 | 2 | 05 | 4.6 | 10 | DS | - | F |  | Stomach - fish, aquatic and terrestrial insects, lesion RS |
| 47329 | 09/20/01 | 29 | Keele R. | 529 | 1268 | 2 | 05 | - | 9 | DS | - | F |  | Fish angled by local resident |
| 47339 | 09/25/01 | 30 | Drum L. outlet | 423 | 711 | 1 | 10 | 0.3 | 9 | DS | - | AF | A | Stomach - fish, aquatic and terrestrial insects, lesion |
| 47340 | 09/25/01 | 31 | Drum L. outlet | 604 | 1917 | 1 | 09 | 3.9 | 18 | DS | - | AF | A | - |
| 47341 | 09/25/01 | 32 | Drum L. outlet | 568 | 1823 | 1 | 10 | 1.1 | 10 | DS | - | AF | A | Stomach contents - small larval insects |
| 47342 | 09/25/01 | 33 | Drum L. outlet | 528 | 1561 | 1 | 09 | 3.0 | 10 | DS | - | AF | A | Stomach - aquatic and terrestrial insects, fish (unidentifiable) |
| 47343 | 09/25/01 | 34 | Drum L. outlet | 639 | 2771 | 2 | 05 | 23.3 | - | DS | - | AF |  | Stomach - aquatic and terrestrial insects, fish (unidentifiable) |
| 47344 | 09/25/01 | 35 | Drum L. outlet | 661 | 3379 | 2 | 05 | 20.2 | 16 | DS | - | AF |  | Stomach contents - empty |
| 47345 | 09/25/01 | 36 | Drum L. outlet | 642 | 3144 | 1 | 09 | 1.6 | 11 | DS | - | AF |  | Stomach contents - small larval insects |
| 47346 | 09/25/01 | 37 | Drum L. outlet | 561 | 1875 | 1 | 10 | 1.0 | 10 | DS | - | AF |  | Stomach - aquatic and terrestrial insects, fish (unidentifiable) |
| 47347 | 09/25/01 | 38 | Drum L. outlet | 550 | 1735 | 1 | 10 | 0.9 | 13 | DS | - | AF |  | Stomach contents - empty |
| 47348 | 09/25/01 | 39 | Drum L. outlet | 558 | 1954 | 2 | 05 | 8.8 | 11 | DS | - | AF |  | Stomach contents - empty |
| 47349 | 09/25/01 | 40 | Drum L. outlet | 635 | 2480 | 2 | 05 | 15.3 | 11 | DS | - | AF |  | Stomach - aquatic and terrestrial (ants) insects, fish (LNSC ) |
| 47119 | 09/27/01 | 41 | Drum L. outlet | 610 | 2360 | 2 | 05 | - | 12 | DS | - | AF |  | Female (resting) |
| 47350 | 09/27/01 | 42 | Unnamed Cr. ${ }^{\text {B }}$ | 49 | 0.9 | - | - | - | 1 | DS | - | AF | J | - |
| 47351 | 09/27/01 | 43 | Unnamed Cr. ${ }^{\text {B }}$ | 57 | 1.8 | 1 | 06 | - | 1 | DS | - | AF | J | - |
| - | 08/10/01 | 44 | Unnamed Cr. ${ }^{\text {A }}$ | 204 | 130 | - | - | - | - | RNT | N | SR |  | Released same day at capture site |
| - | 08/13/01 | 45 | Funeral Cr . | 180 | 60 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 08/13/01 | 46 | Funeral Cr . | 142 | 30 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 08/13/01 | 47 | Funeral Cr . | 179 | 50 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 08/13/01 | 48 | Funeral Cr. | 155 | 40 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |

Table 7. (Continued).

| Fish ID ${ }^{1}$ | $\begin{gathered} \text { Date } \\ \text { M/D/Y } \end{gathered}$ | No. | Location ${ }^{2}$ | $\begin{gathered} \text { FL } \\ (\mathbf{m m}) \end{gathered}$ | $\begin{aligned} & \text { Wt } \\ & \text { (g) } \end{aligned}$ | Sex | $\text { Mat. }{ }^{3}$ | 3 Gonad Wt (g) | Age | $\begin{gathered} \text { Fish }^{4} \\ \text { fate } \end{gathered}$ | $\begin{gathered} \hline \text { Adiposes }^{5} \\ \text { fin clip } \\ (\mathrm{Y} / \mathrm{N}) \\ \hline \hline \end{gathered}$ | Life ${ }^{6}$ history | $\begin{aligned} & \text { Life }^{7} \\ & \text { stage } \end{aligned}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | 08/13/01 | 49 | Funeral Cr. | 180 | 70 | - | - | - | - | RNT | Y | SR | J | Released same day at capture site |
| - | 08/13/01 | 50 | Funeral Cr. | 170 | 50 | - | - | - | - | RNT | Y | SR | J | Released same day at capture site |
| - | 08/14/01 | 51 | Funeral Cr. | 70 | 1 | - | - | - | - | RNT | Y | SR | J | Released same day at capture site |
| - | 08/14/01 | 52 | Funeral Cr . | 78 | 0.9 | - | - | - | - | RNT | Y | SR | J | Released same day at capture site |
| - | 08/14/01 | 53 | Funeral Cr . | 70 | 0.9 | - | - | - | - | RNT | Y | SR | J | Released same day at capture site |
| - | 08/14/01 | 54 | Funeral Cr. | 70 | 0.7 | - | - | - | - | RNT | Y | SR | J | Released same day at capture site |
| - | 08/14/01 | 55 | Funeral Cr . | 75 | 0.5 | - | - | - | - | RNT | Y | SR | J | Released same day at capture site |
| - | 08/14/01 | 56 | Funeral Cr . | 75 | 0.9 | - | - | - | - | RNT | Y | SR | J | Released same day at capture site |
| - | 08/14/01 | 57 | Funeral Cr. | 80 | 0.9 | - | - | - | - | RNT | Y | SR | J | Released same day at capture site |
| - | 08/14/01 | 58 | Funeral Cr . | 75 | 0.8 | - | - | - | - | RNT | Y | SR | J | Released same day at capture site |
| - | 08/14/01 | 59 | Funeral Cr. | 80 | 1 | - | - | - | - | RNT | Y | SR | J | Released same day at capture site |
| - | 09/11/01 | 60 | Funeral Cr. | 168 | 50 | - | - | - | - | RNT | Y | SR | J | Released same day at capture site |
| - | 09/11/01 | 61 | Funeral Cr . | 82 | 6.5 | - | - | - | - | RNT | Y | SR | J | Released same day at capture site |
| - | 09/11/01 | 62 | Funeral Cr . | 117 | 18 | - | - | - | - | RNT | Y | SR | J | Released same day at capture site |
| - | 09/11/01 | 63 | Funeral Cr. | 81 | 5 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/11/01 | 64 | Funeral Cr. | 80 | 5 | - | - | - | - | RNT | Y | SR | J | Released same day at capture site |
| - | 09/11/01 | 65 | Funeral Cr . | 76 | 4 | - | - | - | - | RNT | Y | SR | J | Released same day at capture site |
| - | 09/11/01 | 66 | Funeral Cr . | 80 | 6 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/11/01 | 67 | Funeral Cr. | 78 | 5.5 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/11/01 | 68 | Funeral Cr . | 64 | 3 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/11/01 | 69 | Funeral Cr. | 73 | 4 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/11/01 | 70 | Funeral Cr. | 76 | 3.9 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/11/01 | 71 | Funeral Cr. | 83 | 6 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/11/01 | 72 | Funeral Cr. | 74 | 5 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |

Table 7. (Continued).

| Fish ID ${ }^{1}$ | Date <br> M/D/Y | No. | Location ${ }^{2}$ | $\begin{gathered} \text { FL } \\ (\mathbf{m m}) \end{gathered}$ | $\begin{aligned} & \text { Wt } \\ & \text { (g) } \end{aligned}$ | Sex | $\text { Mat. }{ }^{3}$ | Gonad <br> Wt (g) | Age | $\begin{aligned} & \text { Fish }^{4} \\ & \text { fate } \end{aligned}$ | $\begin{gathered} \text { Adipose }^{5} \\ \text { fin clip } \\ (\mathrm{Y} / \mathrm{N}) \\ \hline \hline \end{gathered}$ | Life ${ }^{6}$ history | $\begin{aligned} & \text { Life }^{7} \\ & \text { stage } \end{aligned}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | 09/11/01 | 73 | Funeral Cr . | 70 | 3.8 | - | - | - | - | RNT | N | SR | J | Released same day at capture site |
| - | 09/11/01 | 74 | Funeral Cr . | 77 | 3.5 | - | - | - | - | RNT | N | SR |  | Released same day at capture site |
| - | 09/11/01 | 75 | Funeral Cr . | 79 | 5 | - | - | - | - | RNT | N | SR |  | Released same day at capture site |
| - | 09/11/01 | 76 | Funeral Cr . | 77 | 4 | - | - | - | - | RNT | N | SR | J R | Released same day at capture site |
| - | 09/11/01 | 77 | Funeral Cr . | 75 | 4 | - | - | - | - | RNT | N | SR |  | Released same day at capture site |
| - | 09/13/01 | 78 | Funeral Cr. | 150 | 34 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/13/01 | 79 | Funeral Cr . | 84 | 4 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/13/01 | 80 | Funeral Cr . | 143 | 27 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/13/01 | 81 | Funeral Cr. | 112 | 14 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/13/01 | 82 | Funeral Cr . | 148 | 33 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/13/01 | 83 | Funeral Cr . | 134 | 28 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/13/01 | 84 | Funeral Cr . | 174 | 50 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/13/01 | 85 | Funeral Cr . | 154 | 37 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/13/01 | 86 | Funeral Cr. | 150 | 31 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/13/01 | 87 | Funeral Cr. | 149 | 34 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/13/01 | 88 | Funeral Cr . | 129 | 24 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/13/01 | 89 | Funeral Cr . | 145 | 25 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/13/01 | 90 | Funeral Cr . | 147 | 32.5 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/13/01 | 91 | Funeral Cr. | 65 | 1 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| - | 09/13/01 | 92 | Prairie Cr . | 175 | 48 | - | - | - | - | RNT | Y | SR |  | Released same day at capture site |
| MC0018 | 08/10/01 | 93 | Unnamed Cr. ${ }^{\text {A }}$ | 202 | 200 | - | - | - | - | T | Y | SR |  | Released same day at capture site |
| MC0019 | 08/10/01 | 94 | Unnamed Cr. ${ }^{\text {A }}$ | 284 | 240 | - | - | - | - | T | Y | SR |  | Released same day at capture site |
| MC0017 | 08/13/01 | 95 | Funeral Cr . | 208 | 100 | - | - | - | - | T | Y | SR |  | Released same day at capture site |
| MC0026 | 08/13/01 | 96 | Funeral Cr. | 281 | 360 | - | - | - | - | T | Y | SR | A R | Released same day at capture site |

Table 7. (Continued).

| Fish ID $^{\mathbf{1}}$ | Date <br> M/D/Y | No. | Location |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 7. (Continued).

| Fish ID ${ }^{1}$ | $\begin{gathered} \text { Date } \\ \text { M/D/Y } \end{gathered}$ | No. | Location ${ }^{2}$ | $\begin{gathered} \text { FL } \\ (\mathrm{mm}) \end{gathered}$ | $\begin{aligned} & \text { Wt } \\ & \text { (g) } \end{aligned}$ | Sex | Mat. ${ }^{3}$ | $\begin{aligned} & \text { Gonad } \\ & \text { Wt (g) } \end{aligned}$ | Age | Fish ${ }^{4}$ fate | Adipose ${ }^{5}$ fin clip (Y/N) | $\begin{gathered} \text { Life }^{6} \\ \text { history } \end{gathered}$ | $\begin{aligned} & \text { Life }^{7} \\ & \text { stage } \end{aligned}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |


| FT0858 | 09/25/01 | 121 | Drum L. outlet | 662 | 2970 | - | - | - | - | T | Y | AF | A | Released same day at capture site |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FT0859 | 09/25/01 | 122 | Drum L. outlet | 574 | 2000 | - | - | - | - | T | Y | AF | A | Released same day at capture site |
| FT0860 | 09/25/01 | 123 | Drum L. outlet | 671 | 3250 | - | - | - | - | T | Y | AF | A | Released same day at capture site |
| FT0861 | 09/25/01 | 124 | Drum L. outlet | 589 | 2250 | - | - | - | - | T | Y | AF | A | Released same day at capture site |
| FT0862 | 09/25/01 | 125 | Drum L. outlet | 611 | 2350 | - | - | - | - | T | Y | AF | A | Released same day at capture site |
| FT0863 | 09/25/01 | 126 | Drum L. outlet | 586 | 2250 | - | - | - | - | T | Y | AF | A | Released same day at capture site |
| FT0864 | 09/25/01 | 127 | Drum L. outlet | 444 | 850 | - | - | - | - | T | Y | AF | A | Released same day at capture site |
| FT0865 | 09/25/01 | 128 | Drum L. outlet | 636 | 2620 | - | - | - | - | T | Y | AF | A | Released same day at capture site |
| FT0866 | 09/25/01 | 129 | Drum L. outlet | 590 | 1950 | - | - | - | - | T | Y | AF | A | Released same day at capture site |
| MC001 | 07/22/00 | 130 | Unnamed Cr. ${ }^{\text {A }}$ | 350 | 400 | - | - | - | - | T | Y | SR | A | Released same day at capture site |
| MC002 | 07/22/00 | 131 | Unnamed Cr. ${ }^{\text {A }}$ | 380 | 460 | - | - | - | - | T | Y | SR | A | Released same day at capture site |
| MC003 | 07/23/00 | 132 | Unnamed Cr. ${ }^{\text {A }}$ | 228 | 130 | - | - | - | - | T | Y | SR | A | Released same day at capture site |
| MC004 | 07/23/00 | 133 | Unnamed Cr. ${ }^{\text {A }}$ | 286 | 450 | - | - | - | - | T | Y | SR | A | Released same day at capture site |
| MC005 | 07/23/00 | 134 | Unnamed Cr. ${ }^{\text {A }}$ | 300 | 590 | - | - | - | - | T | Y | SR | A | Released same day at capture site |
| MC006 | 07/23/00 | 135 | Unnamed Cr. ${ }^{\text {A }}$ | 240 | 190 | - | - | - | - | T | Y | SR | A | Released same day at capture site |
| MC007 | 07/23/00 | 136 | Unnamed Cr. ${ }^{\text {A }}$ | 234 | 100 | - | - | - | - | T | Y | SR | A | Released same day at capture site |
| MC008 | 07/23/00 | 137 | Unnamed Cr. ${ }^{\text {A }}$ | 265 | 180 | - | - | - | - | T | Y | SR | A | Released same day at capture site |
| MC009 | 07/23/00 | 138 | Unnamed Cr. ${ }^{\text {A }}$ | 344 | 380 | - | - | - | - | T | Y | SR | A | Released same day at capture site |
| MC0010 | 07/24/00 | 139 | Unnamed Cr. ${ }^{\text {A }}$ | 312 | 290 | - | - | - | - | T | Y | SR | A | Released same day at capture site |
| MC0011 | 08/03/00 | 140 | Keele R. | 636 | 1220 | - | - | - | - | T | Y | F | A | Released same day at capture site |
| *48.835 | 08/03/00 | 141 | Keele R. | 604 | 2000 | - | - | - | - | T | Y | F | A | Released same day at capture site |
| *48.814 | 08/03/00 | 142 | Keele R. | 577 | 1790 | - | - | - | - | T | Y | F | A | Released same day at capture site |
| *48.872 | 08/03/00 | 143 | Keele R. | 583 | 1410 | - | - | - | - | T | Y | F | A | Released same day at capture site |
| *48.695 | 08/03/00 | 144 | Keele R. | 522 | 1230 | - | - | - | - | T | Y | F | A | Released same day at capture site |

Table 7. (Continued).

| Fish ID ${ }^{1}$ | $\begin{gathered} \text { Date } \\ \text { M/D/Y } \end{gathered}$ | No. | Location ${ }^{2}$ | $\underset{(\mathrm{mm})}{\mathrm{FL}}$ | $\begin{aligned} & \text { Wt } \\ & \text { (g) } \end{aligned}$ | Sex | Mat. ${ }^{3}$ | Gonad <br> Wt (g) | Age | $\begin{aligned} & \text { Fish }^{4} \\ & \text { fate } \end{aligned}$ | $\begin{gathered} \text { Adipose }^{5} \\ \text { fin clip } \\ (\mathrm{Y} / \mathrm{N}) \\ \hline \hline \end{gathered}$ | Life $^{6}$ history | $\begin{aligned} & \text { Life }^{7} \\ & \text { stage } \end{aligned}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| *48.854 | 08/03/00 | 145 | Keele R. | 535 | 1300 | - | - | - | - | T | Y | F | A R | Released same day at capture site |
| *48.774 | 08/03/00 | 146 | Keele R. | 485 | 1000 | - | - | - | - | T | Y | F | A R | Released same day at capture site |
| *48.754 | 08/03/00 | 147 | Keele R. | 474 | 1000 | - | - | - | - | T | Y | F | A R | Released same day at capture site |
| MC0012 | 08/03/00 | 148 | Keele R. | 432 | 730 | - | - | - | - | T | Y | F | A R | Released same day at capture site |
| *48.715 | 08/04/00 | 149 | Keele R. | 513 | 1150 | - | - | - | - | T | Y | F | A R | Released same day at capture site |
| *48.795 | 08/05/00 | 150 | Keele R. | 548 | 1540 | - | - | - | - | T | Y | F | A R | Released same day at capture site |

1. MC\#\#\# \& FT\#\#\# = Floy-tag codes; five digit codes (e.g. 47257) are ID numbers assigned to dead-sampled fish at the Department of Fisheries and Oceans, Wpg; and numbers with $\left(^{*}\right)$ are radio transmitter tags.
2. A - Unnamed Creek flowing into Kotaneelee River system, B - Unnamed Creek flowing into Drum Lake outlet.
3. Maturity (see methods for codes).
4. $\mathrm{DS}=$ dead-sampled, $\mathrm{RNT}=$ released with no tag, $\mathrm{T}=$ released with tag.
5. $\mathrm{Y}=$ yes, $\mathrm{N}=$ no.
6. $\mathrm{AF}=$ adfluvial, $\mathrm{F}=$ fluvial, $\mathrm{SR}=$ stream-resident.
7. $\mathrm{A}=$ adult, $\mathrm{J}=$ juvenile.

Table 8. Qualitative, quantitative, and genetic identification of bull trout dead-sampled from the Northwest Territories in 2000 and 2001.

| Fish ID code | Location | $\begin{gathered} \text { Standard } \\ \text { length } \\ (\mathrm{mm}) \end{gathered}$ | Upper jaw length (mm) | ARC ${ }^{1}$ | BRC ${ }^{2}$ | LDF ${ }^{3}$ | Age (yrs) | $\begin{gathered} \text { Eye }^{4} \\ \text { position } \end{gathered}$ | Upper jaw shape | Upper jaw length | Head shape | Head size | $\underset{\text { DNA }}{\text { mt }}$ | $\text { rDNA }^{6}$ | ID ${ }^{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 47257 | Unnamed Cr. | 267.0 | 29.9 | 10 | 26 | 0.5052 | 8 | top | decurved | well past eye | flat, triangular | large | BLTR | BLTR | BLTR |
| 47258 | Unnamed Cr. | 335.0 | 38.3 | 12 | 26 | 0.9567 | 8 | top | decurved | well past eye | flat, triangular | large | BLTR | HY | BLTR |
| 47259 | Keele R. | 461.0 | 53.1 | 10 | 28 | 1.8911 | 10 | top | decurved | well past eye | flat, triangular | large | BLTR | HY | BLTR |
| 47260 | Keele R. | 478.0 | 58.3 | 10 | 26 | 0.8877 | 10 | top | decurved | well past eye | flat, triangular | large | BLTR | BLTR | BLTR |
| 47261 | Drum Lake | 508.0 | 54.2 | 10 | 28 | 1.5720 | 9 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47262 | Drum Lake | 536.0 | 62.5 | 9 | 28 | 1.7659 | 14 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47325 | South Nahanni R. | 281.0 | 30.7 | 9 | 27 | 0.8625 | 11 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47326 | Unnamed Cr. | 266.0 | 28.0 | 10 | 28 | 1.5166 | 8 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47327 | Unnamed Cr. | 246.0 | 27.1 | 9 | 28 | 1.5181 | 7 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47328 | Unnamed Cr. | 349.0 | 45.5 | 10 | 28 | 2.4509 | 9 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47329 | Keele R. | 465.0 | 57.9 | 10 | 29 | 2.8635 | 9 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47330 | Funeral Cr. | 244.0 | 30.7 | 10 | 26 | 1.0207 | 11 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47331 | Funeral Cr. | 90.0 | 9.1 | 8 | 27 | 0.3836 | 2 | top | decurved | just past eye | - | - | BLTR | BLTR | BLTR |
| 47332 | Funeral Cr. | 60.0 | 6.3 | 8 | 26 | -0.1107 | 1 | top | decurved | just past eye | - | - | BLTR | - | BLTR |
| 47333 | Funeral Cr. | 54.0 | 6.1 | 7 | 28 | 1.2381 | 1 | top | decurved | just past eye | - | - | BLTR | - | BLTR |
| 47334 | Funeral Cr. | 32.0 | 3.5 | 8 | 26 | 0.0471 | 0 | top | decurved | just past eye | - | - | BLTR | BLTR | BLTR |
| 47335 | Funeral Cr. | 36.0 | 2.9 | 7 | 26 | -1.2152 | 0 | top | decurved | just past eye | - | - | BLTR | - | BLTR |
| 47336 | Funeral Cr. | 96.0 | 10.6 | 9 | 29 | 2.1626 | 2 | top | decurved | just past eye | - | - | BLTR | - | BLTR |
| 47337 | Funeral Cr. | 120.0 | 12.5 | 10 | 27 | 0.8495 | 3 | top | decurved | just past eye | - | - | BLTR | - | BLTR |
| 47338 | Irvine Cr . | 400.0 | 44.5 | 10 | 28 | 1.7399 | 10 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47339 | Drum Lake | 368.0 | 41.7 | 9 | 28 | 1.6387 | 9 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47340 | Drum Lake | 528.0 | 71.7 | 10 | 27 | 2.0267 | 18 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47341 | Drum Lake | 491.0 | 60.9 | 9 | 26 | 0.7829 | 10 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47342 | Drum Lake | 465.0 | 55.0 | 9 | 29 | 2.4576 | 10 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |

Table 8. (Continued).

| Fish ID code | Location | Standard length (mm) | Upper jaw length (mm) | $\mathrm{ARC}^{1}$ | BRC ${ }^{2}$ | LDF ${ }^{3}$ | Age <br> (yrs) | $\begin{gathered} \text { Eye }^{4} \\ \text { position } \end{gathered}$ | Upper jaw shape | Upper jaw length | Head shape | Head size | $\underset{\text { DNA }}{\substack{5}}$ | rDNA ${ }^{6}$ | ID ${ }^{7}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 47343 | Drum Lake | 560.0 | 64.9 | 10 | 27 | 1.2890 | 10 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47344 | Drum Lake | 576.0 | 68.0 | 9 | 29 | 2.4489 | 16 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47345 | Drum Lake | 550.0 | 68.6 | 9 | 28 | 2.0669 | 11 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47346 | Drum Lake | 491.0 | 50.7 | 9 | 27 | 0.6345 | 10 | top | decurved | well past eye | flat, triangular | large | BLTR | BLTR | BLTR |
| 47347 | Drum Lake | 478.0 | 51.5 | 9 | 27 | 0.8071 | 13 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47348 | Drum Lake | 492.0 | 57.8 | 9 | 29 | 2.4239 | 11 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47349 | Drum Lake | 559.0 | 70.6 | 10 | 27 | 1.6725 | 11 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47350 | Drum Lake | 44.0 | 5.7 | 10 | 26 | 1.1928 | 1 | top | decurved | well past eye | , | - | BLTR | - | BLTR |
| 47351 | Drum Lake | 51.0 | 6.5 | 9 | 26 | 0.9258 | 0 | top | decurved | just past eye | - | - | BLTR | BLTR | BLTR |
| 47596 | Irvine Cr. | 560.0 | 67.4 | 10 | 29 | 2.7122 | 15 | top | decurved | well past eye | flat, triangular | large | BLTR | BLTR | BLTR |
| 47263 | Funeral Cr . | 72.0 | 5.8 | 7 | 26 | -1.1945 | 1 | top | decurved | just past eye | - | - | BLTR | - | BLTR |
| 47264 | Funeral Cr. | 65.0 | 5.2 | 6 | 26 | -1.3702 | 1 | top | decurved | just past eye | - | - | BLTR | HY | BLTR |
| 47265 | Funeral Cr . | 287.0 | 37.0 | 9 | 28 | 2.2240 | 11 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47266 | Funeral Cr . | 259.0 | 34.9 | 9 | 27 | 1.8096 | 9 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47267 | Funeral Cr . | 150.0 | 14.9 | 9 | 28 | 1.1201 | 4 | top | decurved | just past eye | flat, triangular | large | BLTR | - | BLTR |
| 47268 | Funeral Cr . | 233.0 | 27.0 | 9 | 27 | 1.1117 | 7 | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47269 | Funeral Cr . | 312.0 | 38.3 | 10 | 28 | 2.1732 | - | top | decurved | well past eye | flat, triangular | large | BLTR | - | BLTR |
| 47270 | Funeral Cr. | 166.0 | 17.5 | 9 | 28 | 1.3473 | 5 | top | decurved | just past eye | flat, triangular | large | BLTR | - | BLTR |

## 1. $\mathrm{ARC}=$ principal anal ray count.

2. $\mathrm{BRC}=$ total branchiostegal ray count.
3. Linear discriminant function (LDF) score as computed following Haas and McPhail (1991): LDF Score $=0.629$ (total branchiostegal ray count) +0.178 (principal anal ray count) +37.310 (upper jaw length/standard length) - 21.8.
4. Eye position relative to dorsal surface of head.
5. Identification for individual fish is based on mitochondrial DNA (mtDNA) analyses; BLTR = bull trout, DVCH = Dolly Varden, HY = Hybrid, UK $=$ unknown
6. Identification for individual fish is based on ribosomal DNA (rDNA) analyses.
7. Identification for individual fish is based on the LDF score, genetic results, and morphometric characteristics.

Table 9. Population estimates of bull trout captured from Funeral Creek in 2001.

| Pass | All Life Stages |  | Juveniles |  |
| :---: | :---: | :---: | :---: | :---: |
|  | N (reach 1) | N (reach 2) | N (reach 1) | N (reach 2) |
| 1 | 13 | 14 | 12 | 14 |
| 2 | 3 | 5 | 4 | 6 |
| 3 | 1 | 2 | 1 | 3 |
| Total catch | 17 | 21 | 17 | 23 |
| Population estimate | 17 | 21 | 17 | 24 |
| Standard error | 0.531 | 1.002 | 0.686 | 1.943 |
| upper 95\% CI | 18.126 | 23.090 | 18.454 | 28.020 |
| lower 95\% CI | 15.874 | 18.190 | 15.546 | 19.980 |
| Mean wetted width | 3.02 | 3.50 | 3.05 | 3.60 |
| Reach length | 200 | 200 | 100 | 100 |
| Sampling area | 604 | 700 | 305 | 360 |
| number of fish/ $100 \mathrm{~m}^{2}$ | 2.81 | 3.00 | 5.57 | 6.67 |
| upper 95\% CI | 3.00 | 3.30 | 6.05 | 7.78 |
| lower 95\% CI | 2.63 | 2.60 | 5.10 | 5.55 |

Table 10. Physical habitat characteristics of study locations where habitat use of bull trout was measured in the Northwest Territories during 2000 and 2001.

| Location | Site | Stream order (map scale 1:50, 000) | Average wetted width (m) | Average temp ( ${ }^{\circ} \mathrm{C}$ ) | Month sampled | ```Elevation (m) (map scale 1:50 000)``` | $\text { Depth (cm) }{ }^{1}$ | Velocity (m/s) ${ }^{1}$ | Dominant substrate ${ }^{2}$ | $\begin{aligned} & \text { Dominant } \\ & \text { cover }^{2} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Drum Lake ( $63{ }^{\circ} 48^{\prime} \mathrm{N}, 126^{\circ} 09^{\prime} \mathrm{W}$ ) |  |  |  |  |  |  |  |  |  |  |
| Drum Lake outlet | 1 | 1 | 4.10 | 4.0 | Sept | 800 | 20.4(4-60) | 0.21(0.01-0.81) | 3 | 2 |
|  | 2 | 1 | 4.45 | 4.0 | Sept | 800 | 19.1(3-66) | $0.18(0.01-0.70)$ | 3 | 5 |
|  |  |  |  |  |  |  |  |  |  |  |
| Funeral Creek | 1 | 1 | 3.36 | 7.8 | Aug | 1000 | 28.0(9-89) | $0.39(0.0-1.13)$ | 4 | 6 |
|  | 2 | 1 | 2.56 | 7.5 | Aug | 1100 | 29.5(9-93) | 0.26(0.0-0.93) | 4 | 6 |
|  | 3 | 1 | 1.72 | 4.6 | Sept | 1100 | 22.2(9-80) | 0.30(0.1-1.33) | 4 | 6 |
|  | 4 | 1 | 1.70 | 4.1 | Sept | 1100 | 29.1(7-90) | 0.22(0.01-0.91) | 4 | 6 |
| Jorgenson Creek ( $61^{\circ} 31{ }^{\prime} \mathrm{N}, 126^{\circ} 05^{\prime} \mathrm{W}$ ) |  |  |  |  |  |  |  |  |  |  |
| Jorgenson Creek | 1 | 2 | 6.26 | 7.9 | Sept | 600 | 53.1(12-140) | 0.37(0.01-1.20) | 4 | 6 |
|  | 2 | 2 | 4.86 | 7.8 | Sept | 600 | 31.8(10-72) | 0.68(0.01-1.46) | 4 | 6 |
| Marengo Creek ( $61^{\circ} \mathbf{3 5} \mathbf{~ N , ~} 125^{\circ} \mathbf{4 8}{ }^{\prime} \mathbf{~ W}$ ) |  |  |  |  |  |  |  |  |  |  |
| Marengo Creek | 1 | 2 | 4.96 | - | - | 600 | 40.9(12-85) | 0.41(0.01-1.40) | 6 | 6 |
|  | 2 | 2 | 2.82 | - | - | 600 | 31.5(12-88) | 0.37(0.01-1.72) | 5 | 6 |
| Keele River (64' $\mathbf{1 4}^{\prime} \mathbf{N}, \mathbf{1 2 5}^{\circ} \mathbf{5 9} \mathbf{~ W )}$ |  |  |  |  |  |  |  |  |  |  |
| Unnamed Creek | 1 | 3 | 10.7 | 4.1 | Sept | 400 | 38.2(12-114) | 0.55(0.01-1.46) | 4 | 6 |
|  | 2 | 3 | 13.8 | 5.6 | Sept | 400 | 46.8(12-122) | 0.41(0.0-1.25) | 4 | 6 |
|  | 3 | 2 | 5.17 | 3.6 | Sept | 600 | $35.9(12-66)$ | 0.35(0.01-1.02) | 4 | 6 |
|  | 4 | 2 | 10.1 | 4.0 | Sept | 600 | 45.0(12-130) | 0.42(0.0-1.46) | 4 | 6 |
| Kotaneelee River ( $60^{\circ} \mathbf{3 6}{ }^{\prime} \mathbf{N}, 124^{\circ} \mathbf{0 1}{ }^{\prime} \mathbf{~ W )}$ |  |  |  |  |  |  |  |  |  |  |
| Unnamed Creek | 1 | 2 | 4.95 | 12.7 | Aug | 1500 | 50.2(15-110) | 0.29(0.0-1.00) | 1 | 2 |
|  | 2 | 1 | 6.90 | 10.3 | Aug | 2000 | 55.3(8-135) | 0.47(0.0-1.21) | 4 | 7 |
|  | 3 | 1 | 5.80 | 7.8 | Aug | 2000 | 49.1(8-140) | 0.51(0.0-1.40) | 4 | 4 |
|  | 4 | 1 | 7.20 | 8.5 | Aug | 2000 | 52.5(18-104) | 0.48(0.0-1.55) | 5 | 4 |

1. Depth and velocities are mean values with ranges in parentheses, 2 . Substrate and cover codes are described in methods, and

Tables 2 and 3


Figure 1. Distribution of bull trout and the related char, Dolly Varden, in Northwestern Canada showing locations of confirmed bull trout captures (• Mochnacz 2002; • Reist et al. 2002) in the Northwest Territories.


Figure 2. Study sites showing habitat ( $O$ ) sampling sites and locations where bull trout were captured $(\circ \& \bullet)$ in the central (top) and southern (bottom) Northwest Territories. Note that dashed arrows show flow direction, solid bars (一) represent impassable falls, and only partial drainages are shown for clarity.


[^0]:    1. MC\#\#\# \& FT\#\#\# = Floy-tag codes; five digit codes (e.g. 47257) are ID numbers assigned to dead-sampled fish at the Department of Fisheries and Oceans, Wpg; and $48 . \# \# \#=$ codes for fish with radio-transmitters.
    2. A - Unnamed Creek flowing into Kotaneelee River system, B - Unnamed Creek flowing into Keele River system, C - Unnamed Creek flowing into Drum Lake outlet.
    3. $\mathrm{ANG}=$ angling, $\mathrm{EF}=$ electrofishing, $\mathrm{GN}=$ gillnetting.
    4. $\mathrm{LS}=$ left side, $\mathrm{RS}=$ right side, $\mathrm{YOY}=$ young-of-the-year.
